Vitamín B7 (vitamín H) – Biotín

Vitamin b7 biotin drops of water on a blue gradient background food supplement and healthy lifestyle poster vector illustration
Obrázok: Freepik

Biotín je jedným zo základných vitamínov skupiny B, ktoré telo využíva predovšetkým ako enzymatický kofaktor. Aj keď je populárny ako doplnok krásy a veľmi predbežné dôkazy naznačujú, že môže pôsobiť na vlasy, pokožku a nechty, jeho úloha v tejto oblasti nie je dostatočne preskúmaná. Potenciálne interakcie s cukrovkou tiež nie sú dobre preskúmané.

AKA
Vitamín H

Zhrnutie

Biotín je esenciálny vitamín, ktorý sa od svojho objavenia zaraďuje do skupiny vitamínov B-komplexu a vyskytuje sa v kvasniciach spolu s ostatnými vitamínmi B. Hoci je technicky známy ako vitamín B7, toto označenie nie je príliš bežné, pretože sa zvyčajne jednoducho označuje ako biotín.

Spočiatku sa zistilo, že je v relatívne vysokej miere súčasťou nechtov, kože a vlasov. Biotín je považovaný za hlavný vitamín pre krásu, odkedy jedna pilotná štúdia na ženách s krehkými nechtami ukázala, že jeho suplementácia je prospešná. V súčasnosti sa predáva na zlepšenie estetiky nechtov, pokožky a vlasov. Tieto tvrdenia však neboli vedecky overované, takže nie je veľa dôkazov na podporu úlohy biotínu. Pravdepodobne môže mať tieto účinky, ale jednoducho neexistuje dostatok dôkazov, ktoré by sa dali použiť na podporu týchto tvrdení.

Okrem toho všeobecná úloha biotínu ako enzymatického kofaktora tiež viedla k výskumu, ktorý naznačuje, že môže interagovať s metabolizmom glukózy v ľudskom tele. Vo všeobecnosti sa zdá, že u hlodavcov s vyššou hladinou cirkulujúceho biotínu v krvi je množstvo inzulínu uvoľneného v reakcii na glukózový test vyššie, čo vedie k menšiemu zvýšeniu hladiny glukózy v priebehu času. Tieto dôkazy získané na hlodavcoch tiež naznačujú, že vyššia hladina glukózy sa nevyskytuje spolu s inzulínovou rezistenciou, čo naznačuje potenciálne prospešnú úlohu.

Pokiaľ ide o diabetes, u ľudí nebolo vykonaných veľa výskumov, pričom jedna štúdia zistila, že intramuskulárne podaný biotín bol schopný zmierniť symptómy neuropatie u troch diabetických subjektov.

Celkovo, okrem prípadov, keď môže byť hladina biotínu nedostatočná (alkoholizmus, niektoré epileptické liekové terapie a nadmerná konzumácia surových vaječných bielkov), neexistujú žiadne spoľahlivé dôkazy o výhodách jeho užívania.

Ako užívať

známou doplnkovou dávkou biotínu, ktorá bola testovaná na ľuďoch na účely zlepšenia kvality krehkých nechtov, je 2,5 mg jedenkrát denne počas šiestich mesiacov. Táto dávka sa javí ako relatívne bezpečná, hoci je oveľa vyššia ako odporúčaný denný príjem (RDI) biotínu, ktorý sa pohybuje od 25-30 mcg (mládež) až po 100 mcg (dospelí). Dávka biotínu nájdená v mnohých multivitamínoch (30 mcg alebo 0,03 mg) sa zdá byť viac ako dostatočná.

Literatúra

  1. Chapman-Smith A, Cronan JE Jr. Molecular biology of biotin attachment to proteins. J Nutr. (1999)
  2. Lanska DJ. The discovery of niacin, biotin, and pantothenic acid. Ann Nutr Metab. (2012)
  3. Chapman-Smith A, Cronan JE Jr. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci. (1999)
  4. Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. (2013)
  5. Knowles JR. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. (1989)
  6. Tong L, Harwood HJ Jr. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem. (2006)
  7. Huang CS1, et al. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase. Nature. (2010)
  8. Xiang S, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol. (2008)
  9. Depeint F, et al. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact. (2006)
  10. Hymes J, Wolf B. Human biotinidase isn’t just for recycling biotin. J Nutr. (1999)
  11. Pispa J. Animal biotinidase. Ann Med Exp Biol Fenn. (1965)
  12. Shriver BJ, Roman-Shriver C, Allred JB. Depletion and repletion of biotinyl enzymes in liver of biotin-deficient rats: evidence of a biotin storage system. J Nutr. (1993)
  13. Hymes J, Fleischhauer K, Wolf B. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med. (1995)
  14. Kuroishi T, et al. Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab. (2011)
  15. Healy S, et al. Nonenzymatic biotinylation of histone H2A. Protein Sci. (2009)
  16. Eng WK, et al. Identification and assessment of markers of biotin status in healthy adults. Br J Nutr. (2013)
  17. Mock NI, et al. Increased urinary excretion of 3-hydroxyisovaleric acid and decreased urinary excretion of biotin are sensitive early indicators of decreased biotin status in experimental biotin deficiency. Am J Clin Nutr. (1997)
  18. Mock DM. Biotin status: which are valid indicators and how do we know. J Nutr. (1999)
  19. Mock DM, et al. Indicators of marginal biotin deficiency and repletion in humans: validation of 3-hydroxyisovaleric acid excretion and a leucine challenge. Am J Clin Nutr. (2002)
  20. Nisenson A. Seborrheic dermatitis of infants: treatment with biotin injections for the nursing mother. Pediatrics. (1969)
  21. Wolf B. Biotinidase deficiency: „if you have to have an inherited metabolic disease, this is the one to have“. Genet Med. (2012)
  22. Cowan TM, Blitzer MG, Wolf B; Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee. Technical standards and guidelines for the diagnosis of biotinidase deficiency. Genet Med. (2010)
  23. Wolf B. Worldwide survey of neonatal screening for biotinidase deficiency. J Inherit Metab Dis. (1991)
  24. Kresge N, Simoni RD, Hill RL. The Discovery of Avidin by Esmond E. Snell. J Biol Chem. (2004)
  25. Sydenstricker VP, et al. OBSERVATIONS ON THE „EGG WHITE INJURY“ IN MAN AND ITS CURE WITH A BIOTIN CONCENTRATE. JAMA. (1942)
  26. Baugh CM, Malone JH, Butterworth CE Jr. Human biotin deficiency. A case history of biotin deficiency induced by raw egg consumption in a cirrhotic patient. Am J Clin Nutr. (1968)
  27. WEI RD, WRIGHT LD. HEAT STABILITY OF AVIDIN AND AVIDIN-BIOTIN COMPLEX AND INFLUENCE OF IONIC STRENGTH ON AFFINITY OF AVIDIN FOR BIOTIN. Proc Soc Exp Biol Med. (1964)
  28. Murthy CV, Adiga PR. Purification of biotin-binding protein from chicken egg yolk and comparison with avidin. Biochim Biophys Acta. (1984)
  29. White HB 3rd, et al. Biotin-binding protein from chicken egg yolk. Assay and relationship to egg-white avidin. Biochem J. (1976)
  30. Vesely DL, Kemp SF, Elders MJ. Isolation of a biotin receptor from hepatic plasma membranes. Biochem Biophys Res Commun. (1987)
  31. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A. (1991)
  32. Wuerges J, Geremia S, Randaccio L. Structural study on ligand specificity of human vitamin B12 transporters. Biochem J. (2007)
  33. Horn MA, Heinstein PF, Low PS. Biotin-mediated delivery of exogenous macromolecules into soybean cells. Plant Physiol. (1990)
  34. Russell-Jones G, et al. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem. (2004)
  35. Yellepeddi VK, Kumar A, Palakurthi S. Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro. Anticancer Res. (2009)
  36. Chauhan J, Dakshinamurti K. Role of human serum biotinidase as biotin-binding protein. Biochem J. (1988)
  37. Said HM, Redha R, Nylander W. A carrier-mediated, Na+ gradient-dependent transport for biotin in human intestinal brush-border membrane vesicles. Am J Physiol. (1987)
  38. Said HM, Redha R. Biotin transport in rat intestinal brush-border membrane vesicles. Biochim Biophys Acta. (1988)
  39. Said HM, Derweesh I. Carrier-mediated mechanism for biotin transport in rabbit intestine: studies with brush-border membrane vesicles. Am J Physiol. (1991)
  40. Balamurugan K, Ortiz A, Said HM. Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Am J Physiol Gastrointest Liver Physiol. (2003)
  41. Prasad PD, et al. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem. (1998)
  42. Subramanian VS, et al. Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. Am J Physiol Cell Physiol. (2009)
  43. Subramanya SB, et al. Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanisms. Am J Physiol Gastrointest Liver Physiol. (2011)
  44. Branner GR, Roth-Maier DA. Influence of pre-, pro-, and synbiotics on the intestinal availability of different B-vitamins. Arch Anim Nutr. (2006)
  45. Wang H, et al. Human placental Na+-dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J Biol Chem. (1999)
  46. Said HM, Horne DW, Mock DM. Effect of aging on intestinal biotin transport in the rat. Exp Gerontol. (1990)
  47. Said HM1, Mock DM, Collins JC. Regulation of intestinal biotin transport in the rat: effect of biotin deficiency and supplementation. Am J Physiol. (1989)
  48. León-Del-Río A, Hol-Soto-Borja D, Velázquez A. Studies on the mechanism of biotin uptake by brush-border membrane vesicles of hamster enterocytes. Arch Med Res. (1993)
  49. Zempleni J, Mock DM. Uptake and metabolism of biotin by human peripheral blood mononuclear cells. Am J Physiol. (1998)
  50. Grafe F, et al. Transport of biotin in human keratinocytes. J Invest Dermatol. (2003)
  51. Makino Y, et al. Percutaneous absorption of biotin in healthy subjects and in atopic dermatitis patients. J Nutr Sci Vitaminol (Tokyo). (1999)
  52. Gilby ED, Taylor KJ. Ultrasound monitoring of hepatic metastases during chemotherapy. Br Med J. (1975)
  53. Mock DM, Lankford GL, Mock NI. Biotin accounts for only half of the total avidin-binding substances in human serum. J Nutr. (1995)
  54. Mock DM, Lankford GL, Cazin J Jr. Biotin and biotin analogs in human urine: biotin accounts for only half of the total. J Nutr. (1993)
  55. Zempleni J, McCormick DB, Mock DM. Identification of biotin sulfone, bisnorbiotin methyl ketone, and tetranorbiotin-l-sulfoxide in human urine. Am J Clin Nutr. (1997)
  56. Bogusiewicz A, et al. Biotin accounts for less than half of all biotin and biotin metabolites in the cerebrospinal fluid of children. Am J Clin Nutr. (2008)
  57. Marshall MW, et al. Effects of biotin on lipids and other constituents of plasma of healthy men and women. Artery. (1980)
  58. Beinlich CJ, et al. Myocardial metabolism of pantothenic acid in chronically diabetic rats. J Mol Cell Cardiol. (1990)
  59. Baur B1, Wick H, Baumgartner ER. Na(+)-dependent biotin transport into brush-border membrane vesicles from rat kidney. Am J Physiol. (1990)
  60. Baur B, Baumgartner ER. Biotin and biocytin uptake into cultured primary calf brain microvessel endothelial cells of the blood-brain barrier. Brain Res. (2000)
  61. Said HM, et al. Transport of biotin in basolateral membrane vesicles of rat liver. Am J Physiol. (1990)
  62. Grassl SM. Human placental brush-border membrane Na(+)-biotin cotransport. J Biol Chem. (1992)
  63. Prasad PD1, et al. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter. Arch Biochem Biophys. (1999)
  64. Krause KH, et al. Biotin status of epileptics. Ann N Y Acad Sci. (1985)
  65. Castro-Gago M, et al. Serum biotinidase activity in children treated with valproic acid and carbamazepine. J Child Neurol. (2010)
  66. Castro-Gago M, et al. The influence of valproic acid and carbamazepine treatment on serum biotin and zinc levels and on biotinidase activity. J Child Neurol. (2011)
  67. Suchy SF, Wolf B. Effect of biotin deficiency and supplementation on lipid metabolism in rats: cholesterol and lipoproteins. Am J Clin Nutr. (1986)
  68. Larrieta E, et al. Pharmacological concentrations of biotin reduce serum triglycerides and the expression of lipogenic genes. Eur J Pharmacol. (2010)
  69. Aguilera-Méndez A1, Fernández-Mejía C. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation. Biofactors. (2012)
  70. Ha J1, et al. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. (1994)
  71. Dokusova OK, Krivoruchenko IV. The effect of biotin on the level of cholesterol in the blood of patients with atherosclerosis and essential hyperlipidemia. Kardiologiia. (1972)
  72. Revilla-Monsalve C, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed Pharmacother. (2006)
  73. Sarabu R1, Grimsby J. Targeting glucokinase activation for the treatment of type 2 diabetes–a status review. Curr Opin Drug Discov Devel. (2005)
  74. Dakshinamurti K, Cheah-Tan C. Liver glucokinase of the biotin deficient rat. Can J Biochem. (1968)
  75. Dakshinamurti K, Tarrago-Litvak L, Hong HC. Biotin and glucose metabolism. Can J Biochem. (1970)
  76. Spence JT, Koudelka AP. Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. J Biol Chem. (1984)
  77. Agius L. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state. Biochem J. (1994)
  78. Davagnino J, Ureta T. The identification of extrahepatic „glucokinase“ as N-acetylglucosamine kinase. J Biol Chem. (1980)
  79. Spence JT, Pitot HC. Induction of lipogenic enzymes in primary cultures of rat hepatocytes. Relationship between lipogenesis and carbohydrate metabolism. Eur J Biochem. (1982)
  80. Chauhan J, Dakshinamurti K. Transcriptional regulation of the glucokinase gene by biotin in starved rats. J Biol Chem. (1991)
  81. Dakshinamurti K, Cheah-Tan C. Biotin-mediated synthesis of hepatic glucokinase in the rat. Arch Biochem Biophys. (1968)
  82. Vilches-Flores A, et al. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets. J Nutr Biochem. (2010)
  83. De La Vega LA, Stockert RJ. Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol Cell Physiol. (2000)
  84. Lazo de la Vega-Monroy ML1, et al. Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportion. J Nutr Biochem. (2013)
  85. Sasaki Y, et al. Administration of biotin prevents the development of insulin resistance in the skeletal muscles of Otsuka Long-Evans Tokushima Fatty rats. Food Funct. (2012)
  86. Koutsikos D1, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother. (1990)
  87. Krause KH, Berlit P, Bonjour JP. Impaired biotin status in anticonvulsant therapy. Ann Neurol. (1982)
  88. Bonjour JP. Vitamins and alcoholism. V. Riboflavin, VI. Niacin, VII. Pantothenic acid, and VIII. Biotin. Int J Vitam Nutr Res. (1980)
  89. THOMPSON RH, BUTTERFIELD WJ, FRY IK. Pyruvate metabolism in diabetic neuropathy. Proc R Soc Med. (1960)
  90. Xu C1, et al. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice. Am J Transl Res. (2013)
  91. Law IK, et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics. (2009)
  92. Mao J, et al. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proc Natl Acad Sci U S A. (2009)
  93. Fukuwatari T, Wada H, Shibata K. Age-related alterations of B-group vitamin contents in urine, blood and liver from rats. J Nutr Sci Vitaminol (Tokyo). (2008)
  94. Mock DM. Skin manifestations of biotin deficiency. Semin Dermatol. (1991)
  95. Gschwandtner M, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. (2013)
  96. Ogawa Y, et al. Prospective study of biotin treatment in patients with erythema due to gefitinib or erlotinib. Gan To Kagaku Ryoho. (2014)
  97. Zempleni J, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab. (2008)
  98. Korkmazer N, et al. Serum and liver tissue biotinidase enzyme activity in rats which were administrated to valproic acid. Brain Dev. (2006)
  99. Arslan M1, et al. The effects of biotin supplementation on serum and liver tissue biotinidase enzyme activity and alopecia in rats which were administrated to valproic acid. Brain Dev. (2009)
  100. Schulpis KH1, et al. Low serum biotinidase activity in children with valproic acid monotherapy. Epilepsia. (2001)
  101. Luís PB1, et al. Inhibition of 3-methylcrotonyl-CoA carboxylase explains the increased excretion of 3-hydroxyisovaleric acid in valproate-treated patients. J Inherit Metab Dis. (2012)
  102. Comben N, Clark RJ, Sutherland DJ. Clinical observations on the response of equine hoof defects to dietary supplementation with biotin. Vet Rec. (1984)
  103. CUNHA TJ, LINDLEY DC, ENSMINGER ME. Biotin deficiency syndrome in pigs fed desicated egg white. J Anim Sci. (1946)
  104. Colombo VE, et al. Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopy. J Am Acad Dermatol. (1990)
  105. Hale G, Wallis NG, Perham RN. Interaction of avidin with the lipoyl domains in the pyruvate dehydrogenase multienzyme complex: three-dimensional location and similarity to biotinyl domains in carboxylases. Proc Biol Sci. (1992)
  106. Zempleni J, Trusty TA, Mock DM. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liver. J Nutr. (1997)
  107. Said HM, et al. Chronic ethanol feeding and acute ethanol exposure in vitro: effect on intestinal transport of biotin. Am J Clin Nutr. (1990)
  108. Fennely J, et al. PERIPHERAL NEUROPATHY OF THE ALCOHOLIC: I, AETIOLOGICAL ROLE OF ANEURIN AND OTHER B-COMPLEX VITAMINS. Br Med J. (1964)
  109. Bruce A C Cree, et al. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. (2020)

Medicínske upozornenie!

alergia antioxidanty ashwagandha autoimunita bacopa bezlepková diéta bolesť bylinky celiakia COVID-19 Crohnova choroba cvičenie deti dezinfekcia fajčenie flavonoidy ginko IBD infekčné choroby karnitín karotenoidy ketogénna diéta koenzým Q10 kofeín kosti kurkumín kĺby meta-analýza mozog mužské zdravie obezita omega-3 pamäť poznávacie funkcie probiotiká psoriáza selén stredomorská diéta terpény vitamín A vitamín C vitamín D vitamín E zelený čaj ženské zdravie