1. Choline oxidation and choline dehydrogenase.
  2. Ueland PM. Choline and betaine in health and diseaseJ Inherit Metab Dis. (2011)
  3. Yan J et al.. MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-cholineAm J Clin Nutr. (2011)
  4. Wallace JM, et al. Choline supplementation and measures of choline and betaine status: a randomised, controlled trial in postmenopausal womenBr J Nutr. (2012)
  5. Cohen BM, et al. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy studyJAMA. (1995)
  6. al-Waiz M, et al. The exogenous origin of trimethylamine in the mouseMetabolism. (1992)
  7. Lang DH, et al. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3Biochem Pharmacol. (1998)
  8. Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot studyFood Chem Toxicol. (1999)
  9. Wang Z, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular diseaseNature. (2011)
  10. Rak K, Rader DJ. Cardiovascular disease: the diet-microbe morbid unionNature. (2011)
  11. Davidson S. Flagging flora: heart disease linkNature. (2011)
  12. Mayr M. Recent highlights of metabolomics in cardiovascular researchCirc Cardiovasc Genet. (2011)
  13. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithinJ Pharmacol Exp Ther. (1983)
  14. Tang WH1, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular riskN Engl J Med. (2013)
  15. Jiang X, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humansFASEB J. (2012)
  16. Bruni C, Hegsted DM. Effects of choline-deficient diets on the rat hepatocyte. Electron microscopic observationsAm J Pathol. (1970)
  17. Lombardi B, Pani P, Schlunk FF. Choline-deficiency fatty liver: impaired release of hepatic triglyceridesJ Lipid Res. (1968)
  18. Sowden MP, et al. Apolipoprotein B mRNA and lipoprotein secretion are increased in McArdle RH-7777 cells by expression of betaine-homocysteine S-methyltransferaseBiochem J. (1999)
  19. Yao ZM, Vance DE. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytesJ Biol Chem. (1988)
  20. Emmert JL, et al. Hepatic and renal betaine-homocysteine methyltransferase activity in pigs as affected by dietary intakes of sulfur amino acids, choline, and betaineJ Anim Sci. (1998)
  21. Ridgway ND, Vance DE. Kinetic mechanism of phosphatidylethanolamine N-methyltransferaseJ Biol Chem. (1988)
  22. Alfthan G, et al. The effect of low doses of betaine on plasma homocysteine in healthy volunteersBr J Nutr. (2004)
  23. Humbert JA, Hammond KB, Hathaway WE. Trimethylaminuria: the fish-odour syndromeLancet. (1970)
  24. Treacy EP, et al. Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxicationHum Mol Genet. (1998)
  25. Mitchell SC. The fish-odor syndromePerspect Biol Med. (1996)
  26. Fraser-Andrews EA, et al. Fish odour syndrome with features of both primary and secondary trimethylaminuriaClin Exp Dermatol. (2003)
  27. Zschocke J, et al. Mild trimethylaminuria caused by common variants in FMO3 geneLancet. (1999)
  28. Pardini RS, Sapien RE. Trimethylaminuria (fish odor syndrome) related to the choline concentration of infant formulaPediatr Emerg Care. (2003)
  29. Rehman HU. Fish odor syndromePostgrad Med J. (1999)
  30. Riboflavin-Responsive Trimethylaminuria in a Patient with Homocystinuria on Betaine Therapy.
  31. Warber JP, et al. The effects of choline supplementation on physical performanceInt J Sport Nutr Exerc Metab. (2000)
  32. Spector SA, et al. Effect of choline supplementation on fatigue in trained cyclistsMed Sci Sports Exerc. (1995)
  33. Deuster PA, et al. Choline ingestion does not modify physical or cognitive performanceMil Med. (2002)
  34. Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementationClin Sci (Lond). (1992)
  35. Diet and Refsum’s disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum’s disease.
  36. Rawson ES, et al. Creatine supplementation does not improve cognitive function in young adultsPhysiol Behav. (2008)
  37. Benton D, Donohoe R. The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivoresBr J Nutr. (2011)
  38. Phytanic acid: measurement of plasma concentrations by gas–liquid chromatography–mass spectrometry analysis and associations with diet and other plasma fatty acids.