Chróm

Chromium – Cr

Medicínske upozornenie!

Základná charakteristika

Chróm je esenciálny minerál prijímaný v potrave. V stopových množstvách sa nachádza v rastlinách a hlavne v zrne. V ľudskom tele reguluje inzulín a niekedy sa podáva na zlepšenie pôsobenia inzulínu. U ľudí s normálnou alebo zvýšenou hladinou chrómu sa však jeho suplementáciou nedosiahne žiadny efekt. Hlavný mechanizmus pôsobenia chrómu je zviazaný s chromodulínom, bielkovinou, ktorá zlepšuje signalizáciu na inzulínových receptoroch. Ak je tejto bielkoviny nedostatok, alebo je poškodená, tak je značne znížená aj schopnosť inzulínu pracovať v tele.

Biologické a vedecké súvislosti

Chróm nie je dobre absorbovaný z potravy a jeho absorpcia je negatívne korelovaná s jeho množstvom v prijatej potrave. Najefektívnejšia absorpcia (okolo 2 %) sa zistila pri dávkach menších ako 10 µg.(51) Zvyšovaním dávky sa jeho vstrebávanie zhoršuje. Pri dávkach nad 40 µg sa vstrebáva iba 0,4-0,5 % chrómu.(51)(52) Vstrebávanie chrómu zlepšuje prítomnosť aminokyselín v potrave, prítomnosť vitamínu C a kyseliny nikotínovej.(2) Takisto nedostatok zinku zvyšuje vstrebávanie chrómu.(54) To naznačuje, že tieto dva prvky by si mohli konkurovať pri vstrebávaní.

Distribúcia chrómu v tele
Transferín je proteín, o ktorý prenáša rôzne dvoj- a trojmocné ióny (napr. železo) a bolo zistené, že sa viaže aj s trojmocným chrómom, pričom dokáže naviazať 2 takéto ióny.(57)(58)(59) Predpokladá sa, že transferín dodáva chróm na oligopeptid chromodulín.(60)

Vylučovanie
Chróm sa vylučuje močom. Jeho suplementácia vyúsťuje do zvýšeného vylučovania v obličkách.(56)

Dĺžka života
Zistilo sa, že u potkanov má chróm výrazný proti-starnúci účinok. Tento účinok sa pripisuje zníženiu hladín glukózy z inzulínu, ktoré sa vekom prirodzene zvyšujú.(65)(66)(67) Limitované štúdie na ľuďoch naznačujú, že omladzujúce účinky má chróm iba v spojení s nedostatkom stravy.(68)(69)

Príjem potravy
Chróm redukuje príjem potravy u potkanov a podobný efekt sa pozoroval aj u ľudí, ale nie je jasné, či tento efekt nie je špecifický iba pre niektoré populácie.(78) U potkanov sa zdá, že redukcia príjmu potravy je spôsobená priamo v mozgu, pôsobením chrómu na neurotransmitery, ktoré kontrolujú apetít a potravné správanie.(73)(77)

Kardiovaskulárny systém
Nízke hodnoty chrómu sa u mužov spájajú so zvýšeným rizikom kardiovaskulárnych ochorení.(85) Suplementácia chrómu má pozitívny vplyv na parametre krivky EKG u ľudí postihnutých cukrovkou druhého typu.(86)(87)(88)

U diabetikov sa v dôsledku narušenej glukózovej homeostázy často objavujú abnormality na membráne červených krviniek, ktoré sú spôsobené oxidačným poškodením.(90) Pri in vitro pokusoch bolo zistené, že prítomnosť chrómu dokázala ochrániť membránu červených krviniek aj pri vysokej koncentrácii glukózy a obmedziť jej oxidačné poškodenia.(91)

Meta-analýza vplyvu 3 mesačnej suplementácie chrómu u diabetikov (cukrovka 2. typu) nepreukázala žiadny významný efekt na zlepšenie celkového cholesterolu, HDL, LDL ani vLDL cholesterolu. Podobne sa nepreukázal žiadny vplyv na triglyceridy.(92)

U diabetikov, ktorí počas 16 týždňov konzumovali denne 200 µg chrómu (v podobe chloridu) sa významne znížila hladina glukózy a inzulínu a tiež sa zvýšila senzitivita inzulínových receptorov. Avšak tieto pozitívne efekty sa prejavili iba u mužov.(94)

Predpokladá sa, že dopĺňaním chrómu do organizmu sa môže zlepšiť citlivosť inzulínových receptorov u ľudí, ktorí sú už rezistentní voči pôsobeniu inzulínu.(56)(116) Predpokladá sa, že k zlepšeniu citlivosti inzulínových receptorov dochádza vďaka chromodulínu, ktorý zlepšuje signalizáciu inzulínu.(61)(96) J o samotnom chróme sa uvažuje ako o látke, ktorá zlepšuje citlivosť inzulínových receptorov, ale princíp jeho pôsobenia sa zdá byť iný ako chromodulínu a na dosiahnutie rovnakého efektu potrebuje oveľa vyššiu koncentráciu ako chromodulín. Zdá sa, že chróm neovplyvňuje inzulínové receptory priamo ako to dokáže chromodulín.(43)(97)(98)

Svaly a fyzická výkonnosť
Podľa doterajších výskum sa nezdá, že by chróm pri určitej dávke podporoval rast svalovej hmoty u nejakej populácie.(127)(128)(129)(130) Rovnako zatiaľ žiadna štúdia nenaznačuje, že by chróm zvyšoval výkon svalov.(128)(132) Chróm tiež nemá výrazný vplyv ani na produkciu laktátu, či anaeróbnu kapacitu svalov.(133)(134) Na druhej strane pokusy na potkanoch naznačujú, že chróm zvyšuje zásoby a produkciu glykogénu vo kostrových svaloch, ale neovplyvňuje štiepenie glykogénu na voľnú glukózu.(135)(136)

U obéznych netrénovaných ľudí chróm nedokázal po cvičení ovplyvniť resyntézu glykogénu.(134)

Obezita a množstvo tuku
Suplementácia chrómom má iba zanedbateľný, príp. žiadny efekt na hmotnosť človeka. Niektoré štúdie síce naznačujú mierny efekt, avšak robustné dôkazy o vplyve chrómu na zníženie hmotnosti stále chýbajú.(137)

Pohlavné orgány
Toxická šesťmocná forma chrómu (Cr6+) je toxická pre tkanivo semenníkov.(150)(151) Táto forma sa však nikdy nepoužíva v doplnkoch stravy. Bežne používaná trojmocná forma (Cr3+) nepoškodzuje sertoliho bunky semenníkov ani pri vysokej koncentrácii (do 1mM), čo naznačuje, že táto forma nie je toxická pre tkanivo semenníkov.(152)

Laktácia
Chróm sa vyskytuje v materskom mlieku v koncentrácii 1,73-8,85 nM. Jeho zvýšený príjem v strave matky neovplyvňuje koncentráciu chrómu v materskom mlieku.(153)(154)(155)(156)(157)

Prejavy nedostatku

Hlavným symptómom závažného deficitu chrómu je značne zhoršená tolerancia glukózy a citlivosť   buniek voči inzulínu, spojená s chudnutím, neuropatiou (porucha periférnych nervov) a encefalopatiou (porucha fungovania mozgu). Všetky tieto symptómy vymiznú po doplnení chrómu.(8)(9)

Subklinický deficit chrómu je spojený s inzulínovou rezistenciou. Zistilo sa, že koncentrácia chrómu je u diabetikov nižšia.(10)(11)(12) Tiež sa zistilo, že diéta založená na vysokom množstve cukru (35 % denného príjmu kalórií je z cukru) urýchľuje vylučovanie chrómu močom,(13) hoci diéty zložené z potravín s vysokým glykemickým indexom nedokázali u zdravých jedincov akútne ovplyvniť vylučovanie chrómu močom aj keď v priebehu šiestich dní naznačili tento trend.(14)

Predpokladá sa, že toto zvýšené vylučovanie chrómu močom vzniká v dôsledku uvoľňovania chromodulínu z buniek citlivých na inzulín a jeho následným odstraňovaním v moči. Chromodulín je peptid, ktorý sa v krvi kombinuje s chrómom a prenáša ho do buniek, kde naviazaním na inzulínové receptory zosilňuje signalizáciu prítomnosti inzulínu.(15) Chromodulín viaže chróm veľmi pevnou väzbou, čím vzniká komplex, ktorý za fyziologických podmienok nemôže byť rozdelený. Avšak keď poklesne množstvo chrómu, tak inzulínový receptor nie je viac potreba syntetizovať a celý komplex sa musí eliminovať.(15)(16) Túto hypotézu podporuje aj objavenie chromodulínu v moči(17) a jeho tesná korelácia so sekréciou inzulínu.(17)(18)(19)

Množstvo chrómu v moči sa zvyšuje pri vytrvalom cvičení, pričom jeho zvýšenie nie je sprevádzané zvýšením inzulínu v krvnom sére, ani zvýšením iného iónu v moči.(19) Aj napriek tomu, že sa množstvo inzulínu nezvyšuje, dochádza vo svaloch k zvýšenej absorpcii glukózy, ktorá sa začne vo väčšej miere uvoľňovať z pečene.(20)

Následky predávkovania

Trojmocný chróm (aký sa nachádza v doplnkoch stravy) vykazuje toxicitu pri koncentrácii nad 20 µg/mL krvného séra. Jeho toxicita je spojená s oxidačným poškodením DNA.(21) Je to podobný efekt aký má aj šesťmocný chróm, ktorý je (najmä po vdýchnutí) jedovatý už pri oveľa nižšej koncentrácii.(22)(23)(5)

Toxicita
Na pokusoch s potkanmi sa zistilo, že príjem chrómu vysoko prevyšujúci bežné odporučené dávky môže vyvolať poškodenie pečene.(63) Avšak pri iných testoch sa nepreukázalo poškodenie orgánov ani po dvoch mesiacoch podávania 600-1000 µg/kg chrómu v potrave.(170)(171)  Poškodenia sa objavujú pri dávkach nad 100 µg/kg váhy, čo naznačuje, že takéto dávky môžu byť pre človeka nebezpečné.(63)

Existuje prípadová štúdia ženy užívajúcej 1200-2400 µg chrómu (vo forme pikolinátu) po dobu 4-5 mesiacov, ktorá vykazovala príznaky poškodenia obličiek.(172) Takisto je zaznamenaný prípad kulturistu, u ktorého sa vyvinula rabdomyolýza vyvolaná užitím 1200 µg chrómu (vo forme pikolinátu) v priebehu 48 hodín.(173)

Prírodné zdroje

Chróm je pre ľudí esenciálnym minerálom a ako doplnok stravy sa často využíva na zlepšenie citlivosti buniek voči inzulínu pri cukrovke.(2)

Chróm sa nachádza v:

  • kravskom kolostre (mledzivo produkované mliečnymi žľazami krátko pred pôrodom a počas prvých dní po pôrode), kde býva vo forme oligopeptidu (bohatého na zinok) nazývaného chromodulín, ktorý obsahuje 1 atóm chrómu na 4 aminokyseliny.(3)(4) To predstavuje cca 220 µg chrómu na 1,035 g bielkoviny (193 ng na 1g bielkoviny).(3)  
  • odstredenom mlieku, kde sa koncentrácia chrómu pohybuje okolo 252 µg chrómu na 1,172 g bielkoviny (215 ng na 1g bielkoviny)(3)
  • droždí a pivovarských kvasinkách(28)(29)(30)

Chróm sa vyskytuje vo viacerých formách. Plne oxidovaná forma – Cr6+ je hexavalentná a je vysoko toxická. Používa sa v priemysle.(5) Kvôli toxicite sa táto forma chrómu nikdy nepoužíva v doplnkoch stravy.

V doplnkoch sa používa dvojmocná (divalentná) – Cr2+ alebo stabilnejšia trojmocná (trivalentná) Cr3+ forma chrómu.(2) Najčastejšie sa používa pikolinát chromitý (niekedy uvádzaný ako pikolinát chrómu), čo je vlastne trojmocný chróm viazaný na tri molekuly kyseliny pikolínovej (štruktúrny analóg niacínu, vit. B3). Táto forma je veľmi stabilná a fyziologicky neaktívna až kým voľný chróm.(27) Preto sa považuje za prekurzor chrómu.

Dinikocysteinát chrómu je komplexom chrómu a aminokyseliny L-cysteín. Jedna štúdia uvádza, že na zlepšenie množstva inzulínu a inzulínovej citlivosti buniek je táto forma oveľa účinnejšia ako pikolinát.(37)

Odporúčaná denná dávka (ODD)

Aby sme predišli deficitu potrebujeme v potrave prijímať minimálne 5-20 µg chrómu denne. Odporúčané denné dávky pre ženy sú 21-25 µg; pre mužov 25-35 µg. Počas kojenia sa odporúča dávka 45 µg chrómu denne. Pre deti vo veku 1-3 roky sa odporúča dávka 11 µg; pre deti vo veku 4-8 rokov je odporučená dávka 15 µg.(6)

Štandardná koncentrácia chrómu by mala byť 2,8-45 µg/L v celej krvi a 0,12-2,1 µg/L v krvnom sére.(7)

Vzájomné interakcie

Chróm sa do tela vstrebáva pomocou rovnakého prenášača ako železo a niektoré ďalšie minerály.(59) Hoci pokusy na potkanoch naznačujú, že príjem veľkých dávok chrómu môže negatívne ovplyvniť vstrebávanie železa,(163)(164) štúdie u ľudí užívajúcich normálne dávky chrómu takýto efekt neukázali. Zdá sa, že príjem chrómu v bežných dávkach nemá u ľudí žiadny vplyv na koncentráciu železa.(166)

Literatúra

  1. Parsons A, et al. A proof of concept randomised placebo controlled factorial trial to examine the efficacy of St John’s wort for smoking cessation and chromium to prevent weight gain on smoking cessation . Drug Alcohol Depend. (2009)
  2. Lukaski HC. Chromium as a supplement. Annu Rev Nutr. (1999)
  3. Yamamoto A, Wada O, Suzuki H. Purification and properties of biologically active chromium complex from bovine colostrum . J Nutr. (1988)
  4. Yamamoto A, Wada O, Suzuki H. Separation of biologically active chromium complex from cow colostrum . Tohoku J Exp Med. (1987)
  5. Hexavalent Chromium.
  6. Trumbo P, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zincJ Am Diet Assoc. (2001)
  7. Iyengar V, Woittiez J. Trace elements in human clinical specimens: evaluation of literature data to identify reference valuesClin Chem. (1988)
  8. Freund H, Atamian S, Fischer JE. Chromium deficiency during total parenteral nutritionJAMA. (1979)
  9. Jeejeebhoy KN, et al. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutritionAm J Clin Nutr. (1977)
  10. Davies S, et al. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients–implications for the prevention of cardiovascular disease and type II diabetes mellitus . Metabolism. (1997)
  11. Sundararaman PG, et al. Serum chromium levels in gestational diabetes mellitus . Indian J Endocrinol Metab. (2012)
  12. Woods SE, et al. Serum chromium and gestational diabetes . J Am Board Fam Med. (2008)
  13. Kozlovsky AS, et al. Effects of diets high in simple sugars on urinary chromium losses .Metabolism. (1986)
  14. Hajifaraji M, Leeds AR. The effect of high and low glycemic index diets on urinary chromium in healthy individuals: a cross-over study . Arch Iran Med. (2008)
  15. Vincent JB. The biochemistry of chromium . J Nutr. (2000)
  16. Davis CM, Vincent JB. Isolation and characterization of a biologically active chromium oligopeptide from bovine liver . Arch Biochem Biophys. (1997)
  17. Clodfelder BJ, et al. The trail of chromium(III) in vivo from the blood to the urine: the roles of transferrin and chromodulin . J Biol Inorg Chem. (2001)
  18. Anderson RA, et al. Urinary chromium excretion of human subjects: effects of chromium supplementation and glucose loading . Am J Clin Nutr. (1982)
  19. Anderson RA, et al. Effect of Exercise (Running) on Serum Glucose, Insulin, Glucagon, and Chromium Excretion . Diabetes. (1982)
  20. Wahren J, et al. Glucose metabolism during leg exercise in man . J Clin Invest. (1971)
  21. Bagchi D, et al. Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate . Res Commun Mol Pathol Pharmacol. (1997)
  22. Wise SS, Holmes AL, Wise JP Sr. Hexavalent chromium-induced DNA damage and repair mechanisms . Rev Environ Health. (2008)
  23. Zhang XH, et al. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers . BMC Public Health. (2011)
  24. Kingry KF, Royer AC, Vincent JB. Nuclear magnetic resonance studies of chromium(III) pyridinecarboxylate complexes . J Inorg Biochem. (1998)
  25. Stearns DM, Armstrong WH. Mononuclear and binuclear chromium(III) picolinate complexes .Inorg Chem. (1992)
  26. Yuen G, Heaster H, Hoggard PE. Amine spectrochemical properties in tris(aminocarboxylate) complexes of chromium(III) . Inorg Chim Acta. (1983)
  27. Speetjens JK, et al. The nutritional supplement chromium(III) tris(picolinate) cleaves DNA .Chem Res Toxicol. (1999)
  28. Raspor P, et al. The influence of chromium compounds on yeast physiology (a review) . Acta Microbiol Immunol Hung. (2000)
  29. Pas M, et al. Uptake of chromium(III) and chromium(VI) compounds in the yeast cell structure .Biometals. (2004)
  30. Grant AP, McMullen JK. The effect of brewers yeast containing glucose tolerance factor on the response to treatment in Type 2 diabetics. A short controlled study . Ulster Med J. (1982)
  31. Schwarz K, Mertz W. A glucose tolerance factor and its differentiation from factor 3 . Arch Biochem Biophys. (1957)
  32. Mirsky N, Weiss A, Dori Z. Chromium in biological systems, I. Some observations on glucose tolerance factor in yeast . J Inorg Biochem. (1980)
  33. Weksler-Zangen S, et al. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies . Br J Nutr. (2012)
  34. Toepfer EW, et al. Preparation of chromium-containing material of glucose tolerance factor activity from brewer’s yeast extracts and by synthesis . J Agric Food Chem. (1976)
  35. Preuss HG, et al. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot study . J Med. (2000)
  36. Thomas VL, Gropper SS. Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors . Biol Trace Elem Res. (1996)
  37. Jain SK, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled study . Mol Nutr Food Res. (2012)
  38. Hua Y, et al. Molecular mechanisms of chromium in alleviating insulin resistance . J Nutr Biochem. (2012)
  39. Yamamoto A, Wada O, Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver . Eur J Biochem. (1987)
  40. Vincent JB. Quest for the molecular mechanism of chromium action and its relationship to diabetes . Nutr Rev. (2000)
  41. Yamamoto A, Wada O, Ono T. A low-molecular-weight, chromium-binding substance in mammals . Toxicol Appl Pharmacol. (1981)
  42. Chen Y, et al. Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium . J Nutr. (2011)
  43. Davis CM, Vincent JB. Chromium oligopeptide activates insulin receptor tyrosine kinase activityBiochemistry. (1997)
  44. Yamamoto A, Wada O, Manabe S. Evidence that chromium is an essential factor for biological activity of low-molecular-weight, chromium-binding substance . Biochem Biophys Res Commun. (1989)
  45. Myers MG Jr, White MF. The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains . Diabetes. (1993)
  46. Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium . Proc Nutr Soc. (2004)
  47. Vincent JB. Chromium: celebrating 50 years as an essential element . Dalton Trans. (2010)
  48. Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis . Biochem J. (2003)
  49. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function . Genes Dev. (2011)
  50. Zhao P, et al. A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport . Biochem Pharmacol. (2009)
  51. Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets . Am J Clin Nutr. (1985)
  52. Bunker VW, et al. The uptake and excretion of chromium by the elderly . Am J Clin Nutr. (1984)
  53. Chen NS, Tsai A, Dyer IA. Effect of chelating agents on chromium absorption in rats . J Nutr. (1973)
  54. Hahn CJ, Evans GW. Absorption of trace metals in the zinc-deficient rat . Am J Physiol. (1975)
  55. Laschinsky N, et al. Bioavailability of chromium(III)-supplements in rats and humans .Biometals. (2012)
  56. Cefalu WT, et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus . Metabolism. (2010)
  57. HOPKINS LL Jr, SCHWARZ K. CHROMIUM (3) BINDING TO SERUM PROTEINS, SPECIFICALLY SIDEROPHILIN . Biochim Biophys Acta. (1964)
  58. Ainscough EW, et al. Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy . Biochemistry. (1980)
  59. Aisen P, Aasa R, Redfield AG. The chromium, manganese, and cobalt complexes of transferrinJ Biol Chem. (1969)
  60. Sun Y, et al. The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCr . J Biol Inorg Chem. (2000)
  61. Yamamoto A, Wada O, Ono T. Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in mice . J Inorg Biochem. (1984)
  62. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes . J Cell Biol. (1983)
  63. Yoshida M, et al. Tissue accumulation and urinary excretion of chromium in rats fed diets containing graded levels of chromium chloride or chromium picolinate . J Toxicol Sci. (2010)
  64. Seal CJ, Heaton FW. Effect of dietary picolinic acid on the metabolism of exogenous and endogenous zinc in the rat . J Nutr. (1985)
  65. McCarty MF. Longevity effect of chromium picolinate–‘rejuvenation’ of hypothalamic function .Med Hypotheses. (1994)
  66. Evans GW. Chromium picolinate is an efficacious and safe supplement . Int J Sport Nutr. (1993)
  67. Mertz W. Chromium occurrence and function in biological systems . Physiol Rev. (1969)
  68. Offenbacher EG, Pi-Sunyer FX. Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects . Diabetes. (1980)
  69. Offenbacher EG, Rinko CJ, Pi-Sunyer FX. The effects of inorganic chromium and brewer’s yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjects . Am J Clin Nutr. (1985)
  70. Franklin M, Odontiadis J. Effects of treatment with chromium picolinate on peripheral amino acid availability and brain monoamine function in the rat . Pharmacopsychiatry. (2003)
  71. McCarty MF. Enhancing central and peripheral insulin activity as a strategy for the treatment of endogenous depression–an adjuvant role for chromium picolinate . Med Hypotheses. (1994)
  72. Hainer V, et al. Serotonin and norepinephrine reuptake inhibition and eating behavior . Ann N Y Acad Sci. (2006)
  73. Attenburrow MJ, et al. Chromium treatment decreases the sensitivity of 5-HT2A receptors .Psychopharmacology (Berl). (2002)
  74. Horácek J, et al. The relationship between central serotonergic activity and insulin sensitivity in healthy volunteers . Psychoneuroendocrinology. (1999)
  75. Palazidou E, et al. Noradrenaline uptake inhibition increases melatonin secretion, a measure of noradrenergic neurotransmission, in depressed patients . Psychol Med. (1992)
  76. Pittler MH, Stevinson C, Ernst E. Chromium picolinate for reducing body weight: meta-analysis of randomized trials . Int J Obes Relat Metab Disord. (2003)
  77. Docherty JP, et al. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving . J Psychiatr Pract. (2005)
  78. Anton SD, et al. Effects of chromium picolinate on food intake and satiety . Diabetes Technol Ther. (2008)
  79. Singh T, Williams K. Atypical depression . Psychiatry (Edgmont). (2006)
  80. Brownley KA, et al. A double-blind, randomized pilot trial of chromium picolinate for binge eating disorder: results of the Binge Eating and Chromium (BEACh) study . J Psychosom Res. (2013)
  81. Krikorian R, et al. Improved cognitive-cerebral function in older adults with chromium supplementation . Nutr Neurosci. (2010)
  82. Amann BL, et al. A 2-year, open-label pilot study of adjunctive chromium in patients with treatment-resistant rapid-cycling bipolar disorder . J Clin Psychopharmacol. (2007)
  83. McLeod MN, Gaynes BN, Golden RN. Chromium potentiation of antidepressant pharmacotherapy for dysthymic disorder in 5 patients . J Clin Psychiatry. (1999)
  84. Davidson JR, et al. Effectiveness of chromium in atypical depression: a placebo-controlled trialBiol Psychiatry. (2003)
  85. Guallar E, et al. Low toenail chromium concentration and increased risk of nonfatal myocardial infarction . Am J Epidemiol. (2005)
  86. Vrtovec M, et al. Chromium supplementation shortens QTc interval duration in patients with type 2 diabetes mellitus . Am Heart J. (2005)
  87. Linnemann B, Janka HU. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen Diabetes Study . Exp Clin Endocrinol Diabetes. (2003)
  88. Okin PM, et al. Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes: the strong heart study . Diabetes. (2004)
  89. Ghosh D, et al. Role of chromium supplementation in Indians with type 2 diabetes mellitus . J Nutr Biochem. (2002)
  90. Jain SK, et al. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes . Diabetes. (1989)
  91. Jain SK, et al. Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes . Antioxid Redox Signal. (2006)
  92. Abdollahi M, et al. Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials . J Pharm Pharm Sci. (2013)
  93. Gastaldelli A, et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study . Diabetes. (2000)
  94. Pei D, et al. The influence of chromium chloride-containing milk to glycemic control of patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial . Metabolism. (2006)
  95. Wu GY, Wada O. Studies on a specific chromium binding substance (a low-molecular-weight chromium binding substance) in urine (author’s transl) . Sangyo Igaku. (1981)
  96. Wada O, et al. Low-molecular-weight, chromium-binding substance in rat lungs and its possible role in chromium movement . Ind Health. (1983)
  97. Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase . Biochemistry. (2005)
  98. Mackowiak P, et al. Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro . Mol Med Rep. (2010)
  99. Ukkola O, Santaniemi M. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities . J Intern Med. (2002)
  100. Davis CM, Sumrall KH, Vincent JB. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP) . Biochemistry. (1996)
  101. Goldstein BJ, et al. Enhancement of post-receptor insulin signaling by trivalent chromium in hepatoma cells is associated with differential inhibition of specific protein-tyrosine phosphatases . J Trace Elem Exp Med. (2001)
  102. Wang ZQ, et al. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats . J Nutr. (2006)
  103. Aguirre V, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307) . J Biol Chem. (2000)
  104. Solinas G, et al. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates . Proc Natl Acad Sci U S A. (2006)
  105. Sreejayan N, et al. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice . Obesity (Silver Spring). (2008)
  106. Chen WY, et al. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic mice . Diabetes Obes Metab. (2009)
  107. Ozcan U, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes .Science. (2004)
  108. Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases . Diabetes Obes Metab. (2010)
  109. Ozcan U, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes . Science. (2006)
  110. Yang X, et al. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3 . J Inorg Biochem. (2006)
  111. Evans GW, Bowman TD. Chromium picolinate increases membrane fluidity and rate of insulin internalization . J Inorg Biochem. (1992)
  112. Gorden P, et al. Intracellular translocation of iodine-125-labeled insulin: direct demonstration in isolated hepatocytes . Science. (1978)
  113. McClain DA. Mechanism and role of insulin receptor endocytosis . Am J Med Sci. (1992)
  114. Geiger D, et al. Down-regulation of insulin receptors is related to insulin internalization . Exp Cell Res. (1989)
  115. Iqbal N, et al. Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults . Metab Syndr Relat Disord. (2009)
  116. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction . Diabetes. (2006)
  117. Patal PC, Cardino MT, Jimeno CA. A meta-analysis on the effect of chromium picolinate on glucose and lipid profiles among patients with type 2 diabetes mellitus . Philipp J Intern Med. (2010)
  118. Balk EM, et al. Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials . Diabetes Care. (2007)
  119. Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus–a review . Diabetes Technol Ther. (2006)
  120. Frauchiger MT, Wenk C, Colombani PC. Effects of acute chromium supplementation on postprandial metabolism in healthy young men . J Am Coll Nutr. (2004)
  121. Kleefstra N, et al. Chromium treatment has no effect in patients with type 2 diabetes in a Western population: a randomized, double-blind, placebo-controlled trial . Diabetes Care. (2007)
  122. Kleefstra N, et al. Chromium treatment has no effect in patients with poorly controlled, insulin-treated type 2 diabetes in an obese Western population: a randomized, double-blind, placebo-controlled trial . Diabetes Care. (2006)
  123. Lai MH. Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and e supplementation for type 2 diabetes mellitus . J Clin Biochem Nutr. (2008)
  124. Martin J, et al. Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes . Diabetes Care. (2006)
  125. Racek J, et al. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus . Biol Trace Elem Res. (2006)
  126. McIver DJ, et al. Risk of Type 2 Diabetes Is Lower in US Adults Taking Chromium-Containing Supplements . J Nutr. (2015)
  127. Joseph LJ, et al. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and women . Metabolism. (1999)
  128. Campbell WW, et al. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women . Int J Sport Nutr Exerc Metab. (2002)
  129. Campbell WW, et al. Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men . J Appl Physiol (1985). (1999)
  130. Walker LS, et al. Chromium picolinate effects on body composition and muscular performance in wrestlers . Med Sci Sports Exerc. (1998)
  131. Hallmark MA, et al. Effects of chromium and resistive training on muscle strength and body composition . Med Sci Sports Exerc. (1996)
  132. Livolsi JM, Adams GM, Laguna PL. The effect of chromium picolinate on muscular strength and body composition in women athletes . J Strength Cond Res. (2001)
  133. Davis JM, Welsh RS, Alerson NA. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue . Int J Sport Nutr Exerc Metab. (2000)
  134. Volek JS, et al. Effects of chromium supplementation on glycogen synthesis after high-intensity exercise . Med Sci Sports Exerc. (2006)
  135. Roginski EE, Mertz W. Effects of Chromium (III) Supplementation on Glucose and Amino Acid Metabolism in Rats Fed a Low Protein Diet . J Nutr. ()
  136. Campbell WW, et al. Exercise training and dietary chromium effects on glycogen, glycogen synthase, phosphorylase and total protein in rats . J Nutr. (1989)
  137. Tian H, et al. Chromium picolinate supplementation for overweight or obese adults . Cochrane Database Syst Rev. (2013)
  138. Meyers AW, et al. Are weight concerns predictive of smoking cessation? A prospective analysisJ Consult Clin Psychol. (1997)
  139. Rhee YS, et al. The effects of chromium and copper supplementation on mitogen-stimulated T cell proliferation in hypercholesterolaemic postmenopausal women . Clin Exp Immunol. (2002)
  140. Cheng HH, et al. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects . J Agric Food Chem. (2004)
  141. Anderson RA, et al. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus . J Am Coll Nutr. (2001)
  142. Stearns DM, et al. Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells . FASEB J. (1995)
  143. Parand A, et al. DNA nicking by a trinuclear chromium complex . Inorg. Chim. Acta. (1998)
  144. Hassoun EA, Stohs SJ. Chromium-induced production of reactive oxygen species, DNA single-strand breaks, nitric oxide production, and lactate dehydrogenase leakage in J774A.1 cell cultures . J Biochem Toxicol. (1995)
  145. Sugden KD, Geer RD, Rogers SJ. Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes . Biochemistry. (1992)
  146. Speetjens JK, et al. Low-molecular-weight chromium-binding substance and biomimetic {Cr3O(O2CCH2CH3)6(H2O)3}+ do not cleave DNA under physiologically-relevant conditions .Polyhedron. (1999)
  147. Kato I, et al. Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil . Eur J Epidemiol. (1998)
  148. Shirnamé-Moré L, et al. Genetic effects of 5-hydroxymethyl-2′-deoxyuridine, a product of ionizing radiation . Mutat Res. (1987)
  149. Feng W, et al. Tissue contents and subcellular distribution of chromium and other trace metals in experimental diabetic rats after intravenous injection of Cr 50-enriched stable isotopic tracer solution . Metabolism. (2001)
  150. Marouani N, et al. Effects of hexavalent chromium on reproductive functions of male adult rats .Reprod Biol. (2012)
  151. Carette D, et al. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model . Toxicol Appl Pharmacol. (2013)
  152. Cheng RY, et al. Microarray analysis of altered gene expression in the TM4 Sertoli-like cell line exposed to chromium(III) chloride . Reprod Toxicol. (2002)
  153. Mohamedshah FY, et al. Distribution of a stable isotope of chromium (53Cr) in serum, urine, and breast milk in lactating women . Am J Clin Nutr. (1998)
  154. Kumpulainen J, et al. Dietary chromium intake of lactating Finnish mothers: effect on the Cr content of their breast milk . Br J Nutr. (1980)
  155. Anderson RA, et al. Breast milk chromium and its association with chromium intake, chromium excretion, and serum chromium. . Am J Clin Nutr. (1993)
  156. Kumpulainen J, Vuori E. Longitudinal study of chromium in human milk. . Am J Clin Nutr. (1980)
  157. Casey CE, Hambidge KM. Chromium in human milk from American mothers . Br J Nutr. (1984)
  158. Mestre TA, Zurowski M, Fox SH. 5-Hydroxytryptamine 2A receptor antagonists as potential treatment for psychiatric disorders . Expert Opin Investig Drugs. (2013)
  159. Hockney RA, et al. Lack of effect of chromium supplementation on mental state and body weight in people with schizophrenia . J Clin Psychopharmacol. (2006)
  160. Lydic ML, et al. Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome . Fertil Steril. (2006)
  161. Jamilian M, Asemi Z. Chromium Supplementation and the Effects on Metabolic Status in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial . Ann Nutr Metab. (2015)
  162. Jamilian M, et al. The Effects of Chromium Supplementation on Endocrine Profiles, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial . Biol Trace Elem Res. (2016)
  163. Yang J, Black J. Competitive binding of chromium, cobalt and nickel to serum proteins .Biomaterials. (1994)
  164. Ani M, Moshtaghie AA. The effect of chromium on parameters related to iron metabolism . Biol Trace Elem Res. (1992)
  165. Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status . Nutrition. (2007)
  166. Król E, et al. Effects of chromium brewer’s yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patients . Biol Trace Elem Res. (2011)
  167. Preuss HG, Bagchi D, Bagchi M. Protective effects of a novel niacin-bound chromium complex and a grape seed proanthocyanidin extract on advancing age and various aspects of syndrome X . Ann N Y Acad Sci. (2002)
  168. Diplock AT. Antioxidant nutrients and disease prevention: an overview . Am J Clin Nutr. (1991)
  169. Campbell WW, et al. Resistive training and chromium picolinate: effects on inositols and liver and kidney functions in older adults . Int J Sport Nutr Exerc Metab. (2004)
  170. Chen SY, Lien TF. Toxicity evaluation of chromium picolinate nanoparticles in vivo and in vitro in rat . Biol Trace Elem Res. (2013)
  171. Anderson RA, Bryden NA, Polansky MM. Lack of toxicity of chromium chloride and chromium picolinate in rats . J Am Coll Nutr. (1997)
  172. Cerulli J, et al. Chromium picolinate toxicity . Ann Pharmacother. (1998)
  173.  Martin WR, Fuller RE. Suspected chromium picolinate-induced rhabdomyolysis .Pharmacotherapy. (1998)
  1. Bahijiri SM, et al. The effects of inorganic chromium and brewer’s yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes . Saudi Med J. (2000)
  2. Anderson RA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes . Diabetes. (1997)
  3. Kim CW, et al. Effects of short-term chromium supplementation on insulin sensitivity and body composition in overweight children: randomized, double-blind, placebo-controlled study . J Nutr Biochem. (2011)
  4. Feiner JJ, et al. Chromium picolinate for insulin resistance in subjects with HIV disease: a pilot study . Diabetes Obes Metab. (2008)
  5. Gunton JE, et al. Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled, double-blind trial of supplementation in subjects with impaired glucose tolerance . Diabetes Care. (2005)
  6. Paiva AN, et al. Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: A randomized clinical study . J Trace Elem Med Biol. (2015)
  7. Yazaki Y, et al. A pilot study of chromium picolinate for weight loss . J Altern Complement Med. (2010)
  8. Ali A, et al. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus . Endocr Pract. (2011)
  9. Sharma S, et al. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes . J Trace Elem Med Biol. (2011)
  10. Aghdassi E, et al. In patients with HIV-infection, chromium supplementation improves insulin resistance and other metabolic abnormalities: a randomized, double-blind, placebo controlled trial . Curr HIV Res. (2010)