Resveratrol

Literatúra

  1. Davies M, Roulleau J. Statement of retraction. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkBFree Radic Res. (2012)
  2. Das S, et al. Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathwaysJ Pharmacol Exp Ther. (2005)
  3. Gorbunov N, et al. Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cellsJ Cell Mol Med. (2012)
  4. Juhasz B, Mukherjee S, Das DK. Hormetic response of resveratrol against cardioprotectionExp Clin Cardiol. (2010)
  5. Mukhopadhyay P, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrolPLoS One. (2010)
  6. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefitsDose Response. (2010)
  7. Das S, et al. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activationAm J Physiol Heart Circ Physiol. (2005)
  8. Das S, Fraga CG, Das DK. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaBFree Radic Res. (2006)
  9. Gurusamy N, et al. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardiumJ Cell Mol Med. (2010)
  10. Bertelli A, et al. Analgesic resveratrolAntioxid Redox Signal. (2008)
  11. Mukherjee S, et al. Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosolFree Radic Biol Med. (2009)
  12. Lekli I, Ray D, Das DK. Longevity nutrients resveratrol, wines and grapesGenes Nutr. (2010)
  13. Lekli I, et al. Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotectionJ Cell Mol Med. (2010)
  14. Gurusamy N, et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathwayCardiovasc Res. (2010)
  15. Fujitaka K, et al. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatmentNutr Res. (2011)
  16. Constant J. Alcohol, ischemic heart disease, and the French paradoxCoron Artery Dis. (1997)
  17. Lippi G, et al. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”Semin Thromb Hemost. (2010)
  18. Mezzano D, et al. Mediterranean diet, but not red wine, is associated with beneficial changes in primary haemostasisEur J Clin Nutr. (2003)
  19. Mezzano D, et al. Complementary effects of Mediterranean diet and moderate red wine intake on haemostatic cardiovascular risk factorsEur J Clin Nutr. (2001)
  20. Zamora-Ros R, et al. Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohortBr J Nutr. (2008)
  21. Delmas D, et al. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancerCurr Drug Targets. (2006)
  22. Timperio AM, et al. Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditionsPlant Physiol Biochem. (2012)
  23. Liang Z, et al. Characterization of polyphenolic metabolites in the seeds of Vitis germplasmJ Agric Food Chem. (2012)
  24. Tříska J, et al. Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticolaMolecules. (2012)
  25. Concentration of the Phytoalexin Resveratrol in Wine.
  26. Huang X, Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometryJ Chromatogr A. (2011)
  27. Diaz LE, et al. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperialeMolecules. (2012)
  28. Poulose SM, et al. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cellsJ Agric Food Chem. (2012)
  29. Sobolev VS, Cole RJ. trans-resveratrol content in commercial peanuts and peanut productsJ Agric Food Chem. (1999)
  30. Rius C, et al. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-gamma upregulationJ Immunol. (2010)
  31. Anisimova NY, et al. Trans-, cis-, and dihydro-resveratrol: a comparative studyChem Cent J. (2011)
  32. Orallo F. Comparative studies of the antioxidant effects of cis- and trans-resveratrolCurr Med Chem. (2006)
  33. Leiro J, et al. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genesJ Leukoc Biol. (2004)
  34. Fabbrocini G, et al. Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot studyAm J Clin Dermatol. (2011)
  35. Belguendouz L, Fremont L, Linard A. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteinsBiochem Pharmacol. (1997)
  36. Lappalainen Z. Sirtuins: a family of proteins with implications for human performance and exercise physiologyRes Sports Med. (2011)
  37. Rahman S, Islam R. Mammalian Sirt1: insights on its biological functionsCell Commun Signal. (2011)
  38. Milner J. Cellular regulation of SIRT1Curr Pharm Des. (2009)
  39. Verdin E, et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signalingTrends Biochem Sci. (2010)
  40. Li X, Kazgan N. Mammalian sirtuins and energy metabolismInt J Biol Sci. (2011)
  41. White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exerciseAm J Physiol Endocrinol Metab. (2012)
  42. Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1Altern Med Rev. (2010)
  43. Kelly GS. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2Altern Med Rev. (2010)
  44. Agarwal B, Baur JA. Resveratrol and life extensionAnn N Y Acad Sci. (2011)
  45. Howitz KT, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespanNature. (2003)
  46. Kaeberlein M, et al. Substrate-specific activation of sirtuins by resveratrolJ Biol Chem. (2005)
  47. Pacholec M, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1J Biol Chem. (2010)
  48. Beher D, et al. Resveratrol is not a direct activator of SIRT1 enzyme activityChem Biol Drug Des. (2009)
  49. SIRT1 activation by small molecules – kinetic and biophysical evidence for direct interaction of enzyme and activator.
  50. Hawley SA, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activationCell Metab. (2010)
  51. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
  52. Park CE, et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinaseExp Mol Med. (2007)
  53. Resveratrol stimulates AMP kinase activity in neurons.
  54. Cantó C, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activityNature. (2009)
  55. Price NL, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial functionCell Metab. (2012)
  56. Lan F, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activationJ Biol Chem. (2008)
  57. Hou X, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinaseJ Biol Chem. (2008)
  58. Park SJ, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterasesCell. (2012)
  59. Feige JN, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidationCell Metab. (2008)
  60. Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle.
  61. Gerhart-Hines Z, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alphaEMBO J. (2007)
  62. Rodgers JT, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1Nature. (2005)
  63. Jäger S, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alphaProc Natl Acad Sci U S A. (2007)
  64. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory networkBiochim Biophys Acta. (2011)
  65. Walle T, et al. High absorption but very low bioavailability of oral resveratrol in humansDrug Metab Dispos. (2004)
  66. Cottart CH, et al. Resveratrol bioavailability and toxicity in humansMol Nutr Food Res. (2010)
  67. Howells LM, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases–safety, pharmacokinetics, and pharmacodynamicsCancer Prev Res (Phila). (2011)
  68. Almeida L, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteersMol Nutr Food Res. (2009)
  69. Chaudhary A, et al. Multiple-dose lorazepam kinetics: shuttling of lorazepam glucuronide between the circulation and the gut during day- and night-time dosing intervals in response to feedingJ Pharmacol Exp Ther. (1993)
  70. Metabolism and Disposition of Resveratrol in Rats: Extent of Absorption, Glucuronidation, and Enterohepatic Recirculation Evidenced by a Linked-Rat Model.
  71. Ho KJ. Circadian rhythmic hepatic biliary flow, constituents, concentrations and excretory rates in patients after cholecystectomyChronobiologia. (1994)
  72. Vaz-da-Silva M, et al. Effect of food on the pharmacokinetic profile of trans-resveratrolInt J Clin Pharmacol Ther. (2008)
  73. la Porte C, et al. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjectsClin Pharmacokinet. (2010)
  74. De Santi C, et al. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenumXenobiotica. (2000)
  75. Soleas GJ, Yan J, Goldberg DM. Measurement of trans-resveratrol, (+)-catechin, and quercetin in rat and human blood and urine by gas chromatography with mass selective detectionMethods Enzymol. (2001)
  76. Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection.
  77. Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health–a comprehensive review of human clinical trialsMol Nutr Food Res. (2011)
  78. De Santi C, et al. Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoidsXenobiotica. (2000)
  79. Pacifici GM. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literatureInt J Clin Pharmacol Ther. (2004)
  80. Boocock DJ, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agentCancer Epidemiol Biomarkers Prev. (2007)
  81. Resveratrol Modulates Drug- and Carcinogen-Metabolizing Enzymes in a Healthy Volunteer Study.
  82. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers.
  83. Brown VA, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axisCancer Res. (2010)
  84. Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjectsClin Biochem. (2003)
  85. Gresele P, et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide productionJ Nutr. (2008)
  86. Soleas GJ, Yan J, Goldberg DM. Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detectionJ Chromatogr B Biomed Sci Appl. (2001)
  87. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrolMol Nutr Food Res. (2005)
  88. A Global Survey of Trans-Resveratrol Concentrations in Commercial Wines.
  89. Wu JM, Hsieh TC, Wang Z. Cardioprotection by resveratrol: a review of effects/targets in cultured cells and animal tissuesAm J Cardiovasc Dis. (2011)
  90. Khan MA, Muzammil S, Musarrat J. Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound proteinInt J Biol Macromol. (2002)
  91. Jannin B, et al. Transport of resveratrol, a cancer chemopreventive agent, to cellular targets: plasmatic protein binding and cell uptakeBiochem Pharmacol. (2004)
  92. Belguendouz L, Frémont L, Gozzelino MT. Interaction of transresveratrol with plasma lipoproteinsBiochem Pharmacol. (1998)
  93. Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studiesBiochim Biophys Acta. (1999)
  94. Lançon A, et al. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated processBiochem Biophys Res Commun. (2004)
  95. Wang Q, et al. Resveratrol protects against global cerebral ischemic injury in gerbilsBrain Res. (2002)
  96. Bertelli A, et al. Plasma and tissue resveratrol concentrations and pharmacological activityDrugs Exp Clin Res. (1998)
  97. Vitrac X, et al. Distribution of (14C)-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administrationLife Sci. (2003)
  98. Camont L, et al. Radical-induced oxidation of trans-resveratrolBiochimie. (2012)
  99. Bass TM, et al. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegansMech Ageing Dev. (2007)
  100. Wang C, et al. The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogasterAge (Dordr). (2011)
  101. Bauer JH, et al. Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signalingProc Natl Acad Sci U S A. (2007)
  102. Bauer JH, et al. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogasterAging (Albany NY). (2009)
  103. Antosh M, et al. Comparative transcriptional pathway bioinformatic analysis of dietary restriction, Sir2, p53 and resveratrol life span extension in DrosophilaCell Cycle. (2011)
  104. Flatt T, Tu MP, Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life historyBioessays. (2005)
  105. Chandrashekara KT, Shakarad MN. Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogasterJ Gerontol A Biol Sci Med Sci. (2011)
  106. Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in DrosophilaExp Gerontol. (2011)
  107. Labbé A, et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndromeJ Gerontol A Biol Sci Med Sci. (2011)
  108. Miller RA, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous miceJ Gerontol A Biol Sci Med Sci. (2011)
  109. Pearson KJ, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life spanCell Metab. (2008)
  110. Barger JL, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in micePLoS One. (2008)
  111. Baur JA, et al. Resveratrol improves health and survival of mice on a high-calorie dietNature. (2006)
  112. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation.
  113. Chang Y, Wang SJ. Inhibitory effect of glutamate release from rat cerebrocortical nerve terminals by resveratrolNeurochem Int. (2009)
  114. Gao ZB, Chen XQ, Hu GY. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampusBrain Res. (2006)
  115. Li M, et al. Resveratrol inhibits neuronal discharges in rat hippocampal CA1 areaSheng Li Xue Bao. (2005)
  116. Gozlan H, Ben-Ari Y. NMDA receptor redox sites: are they targets for selective neuronal protectionTrends Pharmacol Sci. (1995)
  117. Abele R, et al. Disulfide bonding and cysteine accessibility in the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluRD. Implications for redox modulation of glutamate receptorsJ Biol Chem. (1998)
  118. Zhang LP, et al. Effect of resveratrol on L-type calcium current in rat ventricular myocytesActa Pharmacol Sin. (2006)
  119. Moldzio R, et al. Protective effects of resveratrol on glutamate-induced damages in murine brain culturesJ Neural Transm. (2013)
  120. Lee JG, et al. Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neuronsFood Chem Toxicol. (2012)
  121. Saleh MC, Connell BJ, Saleh TM. Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptorsNeuroscience. (2010)
  122. Choi DW. Glutamate neurotoxicity and diseases of the nervous systemNeuron. (1988)
  123. Lin CH, Chen PS, Gean PW. Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neuronsEur J Pharmacol. (2008)
  124. Wang Q, et al. Resveratrol protects against neurotoxicity induced by kainic acidNeurochem Res. (2004)
  125. Gupta YK, Briyal S, Chaudhary G. Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in ratsPharmacol Biochem Behav. (2002)
  126. Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsyPharmacol Ther. (2011)
  127. Wu Z, et al. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in ratsNeurochem Res. (2009)
  128. Friedman LK, et al. Lack of resveratrol neuroprotection in developing rats treated with kainic acidNeuroscience. (2013)
  129. Friedman LK, et al. Developmental regulation of glutamate and GABA(A) receptor gene expression in rat hippocampus following kainate-induced status epilepticusDev Neurosci. (1997)
  130. Shen CH, et al. Intrathecal etanercept partially restores morphine’s antinociception in morphine-tolerant rats via attenuation of the glutamatergic transmissionAnesth Analg. (2011)
  131. Shimoyama N, et al. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine toleranceJ Pharmacol Exp Ther. (2005)
  132. Tsai RY, et al. Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant ratsAnesth Analg. (2012)
  133. Cousins SL, Stephenson FA. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95J Biol Chem. (2012)
  134. Magistretti PJ. Neuron-glia metabolic coupling and plasticityJ Exp Biol. (2006)
  135. Araque A. Astrocytes process synaptic informationNeuron Glia Biol. (2008)
  136. Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neuronsAnnu Rev Physiol. (2001)
  137. Araque A, et al. Tripartite synapses: glia, the unacknowledged partnerTrends Neurosci. (1999)
  138. Hertz L. Glutamate, a neurotransmitter–and so much more. A synopsis of Wierzba IIINeurochem Int. (2006)
  139. Matés JM, et al. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/deathInt J Biochem Cell Biol. (2002)
  140. McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brainJ Neurosci Res. (2007)
  141. Quincozes-Santos A, Gottfried C. Resveratrol modulates astroglial functions: neuroprotective hypothesisAnn N Y Acad Sci. (2011)
  142. dos Santos AQ, et al. Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cellsArch Biochem Biophys. (2006)
  143. de Almeida LM, et al. Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte culturesCell Mol Neurobiol. (2007)
  144. Bobermin LD, et al. Resveratrol prevents ammonia toxicity in astroglial cellsPLoS One. (2012)
  145. Felipo V, Butterworth RF. Neurobiology of ammoniaProg Neurobiol. (2002)
  146. Leite MC, et al. Ammonia-induced alteration in S100B secretion in astrocytes is not reverted by creatine additionBrain Res Bull. (2006)
  147. Lemberg A, Fernández MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stressAnn Hepatol. (2009)
  148. Kwon KJ, et al. Melatonin Potentiates the Neuroprotective Properties of Resveratrol Against Beta-Amyloid-Induced Neurodegeneration by Modulating AMP-Activated Protein Kinase PathwaysJ Clin Neurol. (2010)
  149. Kwon KJ, et al. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotectionJ Pineal Res. (2011)
  150. Porquet D, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8Age (Dordr). (2012)
  151. Kao CL, et al. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activationJ Atheroscler Thromb. (2010)
  152. Zou J, et al. Effects of resveratrol on oxidative modification of human low density lipoproteinChin Med J (Engl). (2000)
  153. Zou JG, et al. Resveratrol inhibits copper ion-induced and azo compound-initiated oxidative modification of human low density lipoproteinBiochem Mol Biol Int. (1999)
  154. Wallerath T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthaseCirculation. (2002)
  155. Kleinert H, et al. Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involvedHypertension. (1998)
  156. Thum T, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetesDiabetes. (2007)
  157. Li H, Förstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide systemCurr Pharm Des. (2009)
  158. Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menaceCirculation. (2006)
  159. Li H, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive ratsJ Am Coll Cardiol. (2006)
  160. Spanier G, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4)J Physiol Pharmacol. (2009)
  161. Xia N, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout miceJ Pharmacol Exp Ther. (2010)
  162. Leonard SS, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responsesBiochem Biophys Res Commun. (2003)
  163. Orallo F, et al. The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumptionMol Pharmacol. (2002)
  164. Resveratrol Increases Nitric Oxide Synthase, Induces Accumulation of p53 and p21WAF1/CIP1, and Suppresses Cultured Bovine Pulmonary Artery EndothelialCell Proliferation by Perturbing Progression through S and G2.
  165. Different Mechanisms of Endothelial Dysfunction With Aging and Hypertension in Rat Aorta.
  166. Rush JW, Denniss SG, Graham DA. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activityCan J Appl Physiol. (2005)
  167. Rush JW, et al. Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive ratsExp Biol Med (Maywood). (2007)
  168. Mizutani K, et al. Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive ratsJ Nutr Sci Vitaminol (Tokyo). (2000)
  169. Wang Z, et al. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extractsBiochem Biophys Res Commun. (2006)
  170. Dealcoholized Red Wine Decreases Systolic and Diastolic Blood Pressure and Increases Plasma Nitric Oxide.
  171. Hsieh TC, et al. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53Biochem Biophys Res Commun. (2005)
  172. Wang Z, et al. Identification and purification of resveratrol targeting proteins using immobilized resveratrol affinity chromatographyBiochem Biophys Res Commun. (2004)
  173. Buryanovskyy L, et al. Crystal structure of quinone reductase 2 in complex with resveratrolBiochemistry. (2004)
  174. de Gaetano G, et al. Antithrombotic effect of polyphenols in experimental models: a mechanism of reduced vascular risk by moderate wine consumptionAnn N Y Acad Sci. (2002)
  175. Timmers S, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humansCell Metab. (2011)
  176. Brasnyó P, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patientsBr J Nutr. (2011)
  177. Resveratrol Supplementation Does Not Improve Metabolic Function in Nonobese Women with Normal Glucose Tolerance.
  178. Ku CR, et al. Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic β-cell and the cleavage of poly (ADP-ribose) polymeraseEndocr J. (2012)
  179. Zhang J, et al. The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high-fat dietDiabetes Res Clin Pract. (2012)
  180. Minakawa M, et al. Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cellsJ Clin Biochem Nutr. (2011)
  181. Marchal J, et al. Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinusPLoS One. (2012)
  182. Burgess TA, et al. Improving glucose metabolism with resveratrol in a swine model of metabolic syndrome through alteration of signaling pathways in the liver and skeletal muscleArch Surg. (2011)
  183. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ.
  184. Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switchScience. (1991)
  185. Rayalam S, et al. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytesPhytother Res. (2008)
  186. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes.
  187. Szkudelska K, Nogowski L, Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytesJ Steroid Biochem Mol Biol. (2009)
  188. Baile CA, et al. Effect of resveratrol on fat mobilizationAnn N Y Acad Sci. (2011)
  189. Fischer-Posovszky P, et al. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent mannerAm J Clin Nutr. (2010)
  190. SIRT3, a Mitochondrial Sirtuin Deacetylase, Regulates Mitochondrial Function and Thermogenesis in Brown Adipocytes.
  191. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.
  192. AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol.
  193. Dolinsky VW, et al. Improvements in Skeletal Muscle Strength and Cardiac Function Induced by Resveratrol Contribute to Enhanced Exercise Performance in RatsJ Physiol. (2012)
  194. Tomasello B, et al. Double-Face Activity of Resveratrol in Voluntary Runners: Assessment of DNA Damage by Comet AssayJ Med Food. (2012)
  195. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implicationsBiochem Soc Trans. (2007)
  196.  Liu M, Liu F. Resveratrol inhibits mTOR signaling by targeting DEPTORCommun Integr Biol. (2011)
  197. Liu M, et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTORJ Biol Chem. (2010)
  198. Rajapakse AG, et al. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrolPLoS One. (2011)
  199. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycinPLoS One. (2010)
  200. Schreiner CE, et al. Resveratrol blocks Akt activation in angiotensin II- or EGF-stimulated vascular smooth muscle cells in a redox-independent mannerCardiovasc Res. (2011)
  201. Haider UG, et al. Resveratrol suppresses angiotensin II-induced Akt/protein kinase B and p70 S6 kinase phosphorylation and subsequent hypertrophy in rat aortic smooth muscle cellsMol Pharmacol. (2002)
  202. Drummond MJ, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesisJ Physiol. (2009)
  203. Jackson JR, Ryan MJ, Alway SE. Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged miceJ Gerontol A Biol Sci Med Sci. (2011)
  204. Momken I, et al. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the ratFASEB J. (2011)
  205. Marzetti E, et al. Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty – a mini-reviewGerontology. (2012)
  206. Jian B, et al. Resveratrol Improves Cardiac Contractility following Trauma-Hemorrhage by Modulating Sirt1Mol Med. (2012)
  207. Resveratrol Blunts the Positive Effects of Exercise Training on Cardiovascular Health in Aged Men.
  208. Smoliga JM, Blanchard OL. Recent data do not provide evidence that resveratrol causes ‘mainly negative’ or ‘adverse’ effects on exercise training in humansJ Physiol. (2013)
  209. Gliemann L, et al. Reply from Lasse Gliemann, Jakob Schmidt, Jesper Olesen, Rasmus Sjørup Biensø, Sebastian Louis Peronard, Simon Udsen Grandjean, Stefan Peter Mortensen, Michael Nyberg, Jens Bangsbo, Henriette Pilegaard and Ylva HellstenJ Physiol. (2013)
  210. Continued Postnatal Administration of Resveratrol Prevents Diet-Induced Metabolic Syndrome in Rat Offspring Born Growth Restricted.
  211. Lagouge M, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alphaCell. (2006)
  212. Scribbans TD1, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humansAppl Physiol Nutr Metab. (2014)
  213. Gomez-Cabrera MC1, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performanceAm J Clin Nutr. (2008)
  214. Paulsen G1, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trialJ Physiol. (2014)
  215. Bäckesjö CM, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cellsCells Tissues Organs. (2009)
  216. Resveratrol Stimulates the Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells.
  217. Preventing bone loss & weight gain with combinations of Vitamin D & phytochemicals.
  218. Morita Y, et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovaryReprod Biol Endocrinol. (2012)
  219. Chen YC, et al. Effects of genistein, resveratrol, and quercetin on steroidogenesis and proliferation of MA-10 mouse Leydig tumor cellsJ Endocrinol. (2007)
  220. Wang Y, et al. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cellsToxicol Sci. (2006)
  221. Wang Y, Leung LK. Pharmacological concentration of resveratrol suppresses aromatase in JEG-3 cellsToxicol Lett. (2007)
  222. Canistro D, et al. Alteration of xenobiotic metabolizing enzymes by resveratrol in liver and lung of CD1 miceFood Chem Toxicol. (2009)
  223. Delmas D, et al. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic derived cell linesOncol Rep. (2000)
  224. Sun ZJ, et al. Anti-hepatoma activity of resveratrol in vitroWorld J Gastroenterol. (2002)
  225. Resveratrol Decreases Noise-Induced Cyclooxygenase-2 Expression in the Rat Cochlea.
  226. Leone S, et al. Resveratrol induces DNA double-strand breaks through human topoisomerase II interactionCancer Lett. (2010)
  227. De Salvia R, et al. Resveratrol affects in a different way primary versus fixed DNA damage induced by H(2)O(2) in mammalian cells in vitroToxicol Lett. (2002)
  228. Fukuhara K, Miyata N. Resveratrol as a new type of DNA-cleaving agentBioorg Med Chem Lett. (1998)
  229. Transient Transfection of a Wild-Type p53 Gene Triggers Resveratrol-Induced Apoptosis in Cancer Cells.
  230. Delmas D, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cellsJ Biol Chem. (2003)
  231. Pervaiz S. Resveratrol–from the bottle to the bedsideLeuk Lymphoma. (2001)
  232. Wenzel E, et al. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar ratsMol Nutr Food Res. (2005)
  233. Resveratrol: A Review of Pre-clinical Studies for Human Cancer Prevention.
  234. Gao X, et al. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapesJ Nutr. (2002)
  235. Oncogenic Activation of NF-κB.
  236. Kucharczak J, et al. To be, or not to be: NF-kappaB is the answer–role of Rel/NF-kappaB in the regulation of apoptosisOncogene. (2003)
  237. Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosisArthritis Res Ther. (2009)
  238. Benitez DA, et al. Regulation of cell survival by resveratrol involves inhibition of NF kappa B-regulated gene expression in prostate cancer cellsProstate. (2009)
  239. Park ES, et al. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathwayVascul Pharmacol. (2010)
  240. Bai Y, et al. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivoCancer Sci. (2010)
  241. Parekh P, et al. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cellsExp Toxicol Pathol. (2011)
  242. Hope C, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer preventionMol Nutr Food Res. (2008)
  243. Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosisChem Biol Interact. (2009)
  244. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol.
  245. Wang Y, Ye L, Leung LK. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrolToxicology. (2008)
  246. Resveratrol Potentiates Genistein’s Antiadipogenic and Proapoptotic Effects in 3T3-L1 Adipocytes.
  247. Kleinedler JJ, et al. Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devicesJ Biomed Mater Res B Appl Biomater. (2011)
  248. Yang JY, et al. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetinLife Sci. (2008)
  249. Park HJ, et al. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytesJ Med Food. (2008)
  250. Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosisMol Nutr Food Res. (2011)
  251. Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cellsNutr Metab (Lond). (2011)
  252. Bruckbauer A, et al. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and miceNutr Metab (Lond). (2012)
  253. Raj MH, et al. Synergistic action of dietary phyto-antioxidants on survival and proliferation of ovarian cancer cellsGynecol Oncol. (2008)
  254. Trusov NV, et al. Effects of combined treatment with resveratrol and indole-3-carbinolBull Exp Biol Med. (2010)
  255. Malhotra A, Nair P, Dhawan DK. Curcumin and resveratrol synergistically stimulate p21 and regulate cox-2 by maintaining adequate zinc levels during lung carcinogenesisEur J Cancer Prev. (2011)
  256. Walaszek Z. Potential use of D-glucaric acid derivatives in cancer preventionCancer Lett. (1990)
  257. Heerdt AS, Young CW, Borgen PI. Calcium glucarate as a chemopreventive agent in breast cancerIsr J Med Sci. (1995)
  258. Olas B, Saluk-Juszczak J, Wachowicz B. D-glucaro 1,4-lactone and resveratrol as antioxidants in blood plateletsCell Biol Toxicol. (2008)
  259. Kowalczyk MC, et al. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR miceCancer Prev Res (Phila). (2010)
  260. Vetvicka V, et al. Glucan and resveratrol complex–possible synergistic effects on immune systemBiomed Pap Med Fac Univ Palacky Olomouc Czech Repub. (2007)
  261. Cristòfol R, et al. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrolJ Pineal Res. (2012)
  262. Lamont KT, et al. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotectionJ Pineal Res. (2011)
  263. Kisková T, et al. A combination of resveratrol and melatonin exerts chemopreventive effects in N-methyl-N-nitrosourea-induced rat mammary carcinogenesisEur J Cancer Prev. (2012)
  264. Radhakrishnan S, et al. Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosisFront Biosci (Elite Ed). (2011)
  265. Therapeutic potential of resveratrol: the in vivo evidence.
  266. Edwards JA, et al. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida(®)Ann N Y Acad Sci. (2011)
  267. Johnson WD, et al. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activityFood Chem Toxicol. (2011)
  268. Patel KR, et al. Clinical trials of resveratrolAnn N Y Acad Sci. (2011)
  269. Magyar K, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery diseaseClin Hemorheol Microcirc. (2012)
  270. Kennedy DO, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigationAm J Clin Nutr. (2010)
  271. Crandall JP, et al. Pilot Study of Resveratrol in Older Adults With Impaired Glucose ToleranceJ Gerontol A Biol Sci Med Sci. (2012)
  272. Zhu W, et al. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancerNutr Cancer. (2012)