1. Crozier SJ, et al. Cacao seeds are a “Super Fruit”: A comparative analysis of various fruit powders and productsChem Cent J. (2011)
  2. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods.
  3. Gu L1, et al. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate productsJ Agric Food Chem. (2006)
  4. Miller KB1, et al. Survey of commercially available chocolate- and cocoa-containing products in the United States. 2. Comparison of flavan-3-ol content with nonfat cocoa solids, total polyphenols, and percent cacaoJ Agric Food Chem. (2009)
  5. Arlorio M, et al. Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.)Food Chem. (2008)
  6. Choi MK1, Kang MH, Kim MH. The analysis of copper, selenium, and molybdenum contents in frequently consumed foods and an estimation of their daily intake in korean adultsBiol Trace Elem Res. (2009)
  7. Müller C1, et al. Determination of caffeine, myosmine, and nicotine in chocolate by headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometryJ Food Sci. (2014)
  8. Manach C, et al. Polyphenols: food sources and bioavailabilityAm J Clin Nutr. (2004)
  9. Robbins RJ, et al. Determination of Flavanol and Procyanidin (by Degree of Polymerization 1-10) Content of Chocolate, Cocoa Liquors, Powder(s), and Cocoa Flavanol Extracts by Normal Phase High-Performance Liquid Chromatography: Collaborative StudyJ AOAC Int. (2012)
  10. Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for cliniciansTher Adv Chronic Dis. (2012)
  11. Ghosh D, Scheepens A. Vascular action of polyphenolsMol Nutr Food Res. (2009)
  12. Ramirez-Sanchez I, et al. Fluorescent detection of (-)-epicatechin in microsamples from cacao seeds and cocoa products: Comparison with Folin-Ciocalteu methodJ Food Compost Anal. (2010)
  13. Andres-Lacueva C1, et al. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing processJ Agric Food Chem. (2008)
  14. Hurst WJ1, et al. Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredientsChem Cent J. (2011)
  15. Miller KB1, et al. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powdersJ Agric Food Chem. (2008)
  16. Chocamine.
  17. Fisher ND, et al. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humansJ Hypertens. (2003)
  18. Taubert D, et al. Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trialJAMA. (2007)
  19. Heiss C, et al. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokersJ Am Coll Cardiol. (2005)
  20. Heiss C, et al. Vascular effects of cocoa rich in flavan-3-olsJAMA. (2003)
  21. Balzer J, et al. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trialJ Am Coll Cardiol. (2008)
  22. Monahan KD, et al. Dose-dependent increases in flow-mediated dilation following acute cocoa ingestion in healthy older adultsJ Appl Physiol. (2011)
  23. Vlachopoulos C, et al. Effect of dark chocolate on arterial function in healthy individualsAm J Hypertens. (2005)
  24. Heiss C, et al. Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 1 weekJ Cardiovasc Pharmacol. (2007)
  25. Grassi D1, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensivesHypertension. (2005)
  26. Grassi D1, et al. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolateJ Nutr. (2008)
  27. Ramirez-Sanchez I, et al. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathwaysHypertension. (2010)
  28. Leikert JF, et al. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cellsCirculation. (2002)
  29. Ramirez-Sanchez I1, et al. (-)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKTMol Cell Biochem. (2012)
  30. Moreno-Ulloa A1, et al. Cell membrane mediated (-)-epicatechin effects on upstream endothelial cell signaling: evidence for a surface receptorBioorg Med Chem Lett. (2014)
  31. Taylor MS1, et al. Dynamic Ca(2+) signal modalities in the vascular endotheliumMicrocirculation. (2012)
  32. Intraluminal-restricted 17β-estradiol exerts the same myocardial protection against ischemia/reperfusion injury in vivo as free 17β-estradiol.
  33. Ramirez-Sanchez I1, et al. (-)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cellsAm J Physiol Cell Physiol. (2011)
  34. Schramm DD1, et al. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cellsAm J Clin Nutr. (2001)
  35. Awortwe C1, et al. Unsweetened natural cocoa has anti-asthmatic potentialInt J Immunopathol Pharmacol. (2014)
  36. Jones RL1, et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary arteryJ Cardiovasc Pharmacol. (1997)
  37. Misson J1, Clark W, Kendall MJ. Therapeutic advances: leukotriene antagonists for the treatment of asthmaJ Clin Pharm Ther. (1999)
  38. Hansel TT1, et al. Theophylline: mechanism of action and use in asthma and chronic obstructive pulmonary diseaseDrugs Today (Barc). (2004)
  39. Rios LY, et al. Cocoa procyanidins are stable during gastric transit in humansAm J Clin Nutr. (2002)
  40. Schramm DD1, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanolsLife Sci. (2003)
  41. Lesser S1, Cermak R, Wolffram S. Bioavailability of quercetin in pigs is influenced by the dietary fat contentJ Nutr. (2004)
  42. Visioli F1, et al. Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administrationJ Nutr. (2003)
  43. Roura E1, et al. Milk does not affect the bioavailability of cocoa powder flavonoid in healthy humanAnn Nutr Metab. (2007)
  44. Gossai D1, Lau-Cam CA. Assessment of the effect of type of dairy product and of chocolate matrix on the oral absorption of monomeric chocolate flavanols in a small animal modelPharmazie. (2009)
  45. Mullen W1, et al. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humansAm J Clin Nutr. (2009)
  46. Muniyappa R1, et al. Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertensionAm J Clin Nutr. (2008)
  47. Loffredo L1, et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery diseaseJ Am Heart Assoc. (2014)
  48. Loffredo L1, et al. NOX2-mediated arterial dysfunction in smokers: acute effect of dark chocolateHeart. (2011)
  49. Carnevale R1, et al. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokersJ Thromb Haemost. (2012)
  50. Esser D1, et al. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight menFASEB J. (2014)
  51. Mogollon JA, et al. Chocolate flavanols and skin photoprotection: a parallel, double-blind, randomized clinical trialNutr J. (2014)
  52. Zhu QY1, et al. Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysisClin Dev Immunol. (2005)
  53. Holt RR1, et al. Procyanidin dimer B2 (epicatechin-(4beta-8)-epicatechin) in human plasma after the consumption of a flavanol-rich cocoaAm J Clin Nutr. (2002)
  54. van Praag H1, et al. Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in miceJ Neurosci. (2007)
  55. Abd El Mohsen MM1, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestionFree Radic Biol Med. (2002)
  56. Fullerton DT, et al. Sugar, opioids and binge eatingBrain Res Bull. (1985)
  57. Gosnell BA1, Levine AS. Reward systems and food intake: role of opioidsInt J Obes (Lond). (2009)
  58. Macht M1, Mueller J. Immediate effects of chocolate on experimentally induced mood statesAppetite. (2007)
  59. Hou QL1, et al. SNAP-25 in hippocampal CA3 region is required for long-term memory formationBiochem Biophys Res Commun. (2006)
  60. Wong RW1, et al. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic miceProc Natl Acad Sci U S A. (2002)
  61. Massolt ET, et al. Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young womenRegul Pept. (2010)
  62. Francis ST, et al. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young peopleJ Cardiovasc Pharmacol. (2006)
  63. Mulert C1, et al. The relationship between reaction time, error rate and anterior cingulate cortex activityInt J Psychophysiol. (2003)
  64. Larsson SC1, Virtamo J, Wolk A. Chocolate consumption and risk of stroke: a prospective cohort of men and meta-analysisNeurology. (2012)
  65. Wirtz PH1, et al. Dark chocolate intake buffers stress reactivity in humansJ Am Coll Cardiol. (2014)
  66. Hoekstra R1, et al. Effect of light therapy on biopterin, neopterin and tryptophan in patients with seasonal affective disorderPsychiatry Res. (2003)
  67. Maes M1, et al. Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune responsePsychiatry Res. (1994)
  68. Adams S1, et al. The kynurenine pathway in brain tumor pathogenesisCancer Res. (2012)
  69. Widner B1, et al. Neopterin production, tryptophan degradation, and mental depression–what is the linkBrain Behav Immun. (2002)
  70. Jenny M1, et al. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cellsJ Ethnopharmacol. (2009)
  71. Gershon MD1, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disordersGastroenterology. (2007)
  72. Pase MP, et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trialJ Psychopharmacol. (2013)
  73. Desideri G, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the Cocoa, Cognition, and Aging (CoCoA) studyHypertension. (2012)
  74. Crews WD Jr1, Harrison DW, Wright JW. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: clinical findings from a sample of healthy, cognitively intact older adultsAm J Clin Nutr. (2008)
  75. Brickman AM1, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adultsNat Neurosci. (2014)
  76. Gu Y, et al. Inhibition of key digestive enzymes by cocoa extracts and procyanidinsJ Agric Food Chem. (2011)
  77. Nogueira L1, et al. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscleJ Physiol. (2011)
  78. Buitrago-Lopez A1, et al. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysisBMJ. (2011)
  79. Mostofsky E, et al. Chocolate intake and incidence of heart failure: a population-based prospective study of middle-aged and elderly womenCirc Heart Fail. (2010)
  80. Buijsse B, et al. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly StudyArch Intern Med. (2006)
  81. Corti R, et al. Cocoa and cardiovascular healthCirculation. (2009)
  82. Shiina Y, et al. Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transthoracic Doppler echocardiography in healthy adultsInt J Cardiol. (2009)
  83. West SG1, et al. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adultsBr J Nutr. (2014)
  84. Mogollon JA, et al. Blood pressure and endothelial function in healthy, pregnant women after acute and daily consumption of flavanol-rich chocolate: a pilot, randomized controlled trialNutr J. (2013)
  85. Pincomb GA, et al. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young menAm J Cardiol. (1985)
  86. Zhu QY1, et al. Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysisExp Biol Med (Maywood). (2002)
  87. Zieman SJ1, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffnessArterioscler Thromb Vasc Biol. (2005)
  88. Theuwissen E1, Smit E, Vermeer C. The role of vitamin K in soft-tissue calcificationAdv Nutr. (2012)
  89. Tota-Maharaj R1, et al. Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years oldEur Heart J. (2012)
  90. Pereira T1, et al. Central arterial hemodynamic effects of dark chocolate ingestion in young healthy people: a randomized and controlled trialCardiol Res Pract. (2014)
  91. Pearson DA, et al. Inhibition of in vitro low-density lipoprotein oxidation by oligomeric procyanidins present in chocolate and cocoasMethods Enzymol. (2001)
  92. Kondo K, et al. Inhibition of LDL oxidation by cocoaLancet. (1996)
  93. Salah N, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidantsArch Biochem Biophys. (1995)
  94. Wan Y1, et al. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humansAm J Clin Nutr. (2001)
  95. Engler MB1, et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adultsJ Am Coll Nutr. (2004)
  96. Sudarma V1, Sukmaniah S, Siregar P. Effect of dark chocolate on nitric oxide serum levels and blood pressure in prehypertension subjectsActa Med Indones. (2011)
  97. Schnorr O, et al. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivoArch Biochem Biophys. (2008)
  98. Davison K1, et al. Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjectsInt J Obes (Lond). (2008)
  99. Ottaviani JI, et al. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivoFree Radic Biol Med. (2011)
  100. Schroeter H, et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humansProc Natl Acad Sci U S A. (2006)
  101. Hermann F, et al. Dark chocolate improves endothelial and platelet functionHeart. (2006)
  102. Faridi Z, et al. Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trialAm J Clin Nutr. (2008)
  103. d’El-Rei J1, et al. Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumptionInt J Hypertens. (2013)
  104. Petrone AB, Gaziano JM, Djoussé L. Effects of Dark Chocolate and Cocoa Products on Endothelial Function: A Meta-AnalysisCurr Nutr Rep. (2013)
  105. Farouque HM, et al. Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: a randomized double-blind placebo-controlled studyClin Sci (Lond). (2006)
  106. Persson IA, et al. Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers–a nutrigenomics perspectiveJ Cardiovasc Pharmacol. (2011)
  107. Vlachopoulos C, Alexopoulos N, Stefanadis C. Effect of dark chocolate on arterial function in healthy individuals: cocoa instead of ambrosiaCurr Hypertens Rep. (2006)
  108. Fraga CG1, et al. Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer playersClin Dev Immunol. (2005)
  109. Grassi D1, et al. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemiaHypertension. (2012)
  110. Ried K, et al. Effect of cocoa on blood pressureCochrane Database Syst Rev. (2012)
  111. Ried K1, et al. Does chocolate reduce blood pressure? A meta-analysisBMC Med. (2010)
  112. Ottaviani JI, et al. Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trialAm J Clin Nutr. (2015)
  113. Bijak M1, et al. Protective effects of (-)-epicatechin against nitrative modifications of fibrinogenThromb Res. (2012)
  114. Wippel R1, et al. Interference of the polyphenol epicatechin with the biological chemistry of nitric oxide- and peroxynitrite-mediated reactionsBiochem Pharmacol. (2004)
  115. Nowak P1, Wachowicz B. Peroxynitrite-mediated modification of fibrinogen affects platelet aggregation and adhesionPlatelets. (2002)
  116. Wirtz PH1, et al. Independent association between lower level of social support and higher coagulation activity before and after acute psychosocial stressPsychosom Med. (2009)
  117. Wirtz PH1, et al. Coagulation activity before and after acute psychosocial stress increases with agePsychosom Med. (2008)
  118. von Känel R, et al. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy menThromb Haemost. (2014)
  119. Hamed MS1, et al. Dark chocolate effect on platelet activity, C-reactive protein and lipid profile: a pilot studySouth Med J. (2008)
  120. Rein D1, et al. Cocoa inhibits platelet activation and functionAm J Clin Nutr. (2000)
  121. Pearson DA1, et al. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet functionThromb Res. (2002)
  122. Ostertag LM1, et al. Flavan-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way–a randomized-controlled human intervention trialMol Nutr Food Res. (2013)
  123. Tokede OA, Gaziano JM, Djoussé L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysisEur J Clin Nutr. (2011)
  124. Grassi D1, et al. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy personsAm J Clin Nutr. (2005)
  125. Almoosawi S1, et al. The effect of polyphenol-rich dark chocolate on fasting capillary whole blood glucose, total cholesterol, blood pressure and glucocorticoids in healthy overweight and obese subjectsBr J Nutr. (2010)
  126. Taub PR1, et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoaClin Transl Sci. (2012)
  127. Kim JA1, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanismsCirculation. (2006)
  128. Steinberg HO1, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide releaseJ Clin Invest. (1994)
  129. Mather K1, et al. Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flowAm J Physiol Endocrinol Metab. (2000)
  130. Di Renzo L1, et al. Effects of dark chocolate in a population of normal weight obese women: a pilot studyEur Rev Med Pharmacol Sci. (2013)
  131. Arend WP1, et al. Interleukin-1 receptor antagonist: role in biologyAnnu Rev Immunol. (1998)
  132. Cartier A1, et al. Increased plasma interleukin-1 receptor antagonist levels in men with visceral obesityAnn Med. (2009)
  133. Luheshi GN1, et al. Leptin actions on food intake and body temperature are mediated by IL-1Proc Natl Acad Sci U S A. (1999)
  134. Meier CA1, et al. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptinJ Clin Endocrinol Metab. (2002)
  135. Nogueira Lde P1, et al. Consumption of high-polyphenol dark chocolate improves endothelial function in individuals with stage 1 hypertension and excess body weightInt J Hypertens. (2012)
  136. Basaria S1, Bhasin S. Targeting the skeletal muscle-metabolism axis in prostate-cancer therapyN Engl J Med. (2012)
  137. Lee SJ. Quadrupling muscle mass in mice by targeting TGF-beta signaling pathwaysPLoS One. (2007)
  138. Gutierrez-Salmean G1, et al. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiationJ Nutr Biochem. (2014)
  139. Watanabe N, et al. Flavan-3-ols fraction from cocoa powder promotes mitochondrial biogenesis in skeletal muscle in miceLipids Health Dis. (2014)
  140. Hüttemann M1, et al. (-)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacityClin Sci (Lond). (2013)
  141. Davison G1, et al. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exerciseEur J Nutr. (2012)
  142. Allgrove J1, et al. Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cyclingInt J Sport Nutr Exerc Metab. (2011)
  143. Okano G1, Sato Y, Murata Y. Effect of elevated blood FFA levels on endurance performance after a single fat meal ingestionMed Sci Sports Exerc. (1998)
  144. Leick L1, et al. PGC-1alpha is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscleExp Gerontol. (2010)
  145. Koch LG1, Britton SL. Artificial selection for intrinsic aerobic endurance running capacity in ratsPhysiol Genomics. (2001)
  146. Naples SP1, et al. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacityAppl Physiol Nutr Metab. (2010)
  147. Kivelä R1, et al. Gene expression centroids that link with low intrinsic aerobic exercise capacity and complex disease riskFASEB J. (2010)
  148. Rivas DA1, et al. Low intrinsic running capacity is associated with reduced skeletal muscle substrate oxidation and lower mitochondrial content in white skeletal muscleAm J Physiol Regul Integr Comp Physiol. (2011)
  149. Hüttemann M1, Lee I, Malek MH. (-)-Epicatechin maintains endurance training adaptation in mice after 14 days of detrainingFASEB J. (2012)
  150. Blankenberg S1, Barbaux S, Tiret L. Adhesion molecules and atherosclerosisAtherosclerosis. (2003)
  151. Mao TK1, et al. Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cellsJ Med Food. (2002)
  152. Ramiro E1, et al. Flavonoids from Theobroma cacao down-regulate inflammatory mediatorsJ Agric Food Chem. (2005)
  153. Al-Hanbali M1, et al. Epicatechin suppresses IL-6, IL-8 and enhances IL-10 production with NF-kappaB nuclear translocation in whole blood stimulated systemNeuro Endocrinol Lett. (2009)
  154. Zeng H1, et al. Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulationJ Agric Food Chem. (2011)
  155. Wisman KN1, et al. Accurate assessment of the bioactivities of redox-active polyphenolics in cell cultureJ Agric Food Chem. (2008)
  156. Kenny TP1, et al. Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cellsExp Biol Med (Maywood). (2007)
  157. Becker K1, et al. Immunomodulatory properties of cacao extracts – potential consequences for medical applicationsFront Pharmacol. (2013)
  158. Asehnoune K1, et al. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa BJ Immunol. (2004)
  159. Andert SE1, et al. Neopterin release from human endothelial cells is triggered by interferon-gammaClin Exp Immunol. (1992)
  160. Hofmann B1, et al. Different lymphoid cell populations produce varied levels of neopterin, beta 2-microglobulin and soluble IL-2 receptor when stimulated with IL-2, interferon-gamma or tumour necrosis factor-alphaClin Exp Immunol. (1992)
  161. Fuchs D1, et al. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptomsJ Acquir Immune Defic Syndr. (1990)
  162. Pfefferkorn ER. Interferon gamma and the growth of Toxoplasma gondii in fibroblastsAnn Inst Pasteur Microbiol. (1986)
  163. Nathan CF. Peroxide and pteridine: a hypothesis on the regulation of macrophage antimicrobial activity by interferon gammaInterferon. (1986)
  164. Hronek M1, et al. The association between specific nutritional antioxidants and manifestation of colorectal cancerNutrition. (2000)
  165. Hall S1, Agrawal DK2. Key mediators in the immunopathogenesis of allergic asthmaInt Immunopharmacol. (2014)
  166. Ellis R1, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repairNat Rev Neurosci. (2007)
  167. McArthur JC1, et al. Human immunodeficiency virus-associated dementia: an evolving diseaseJ Neurovirol. (2003)
  168. Mattson MP1, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disordersNeuron. (2008)
  169. Nath S1, et al. Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathwayJ Neurovirol. (2012)
  170. Ruijters EJ1, et al. The cocoa flavanol (-)-epicatechin protects the cortisol responsePharmacol Res. (2014)
  171. Tzounis X, et al. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention studyAm J Clin Nutr. (2011)
  172. Tzounis X, et al. Flavanol monomer-induced changes to the human faecal microfloraBr J Nutr. (2008)
  173. Lee HC, et al. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiotaRes Microbiol. (2006)
  174. McCormick PA1, et al. The effect of non-protein liquid meals on the hepatic venous pressure gradient in patients with cirrhosisJ Hepatol. (1990)
  175. O’Brien S1, et al. Postprandial changes in portal haemodynamics in patients with cirrhosisGut. (1992)
  176. Bellis L1, et al. Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosisHepatology. (2003)
  177. Hernández-Guerra M1, et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertensionHepatology. (2006)
  178. De Gottardi A1, et al. Postprandial effects of dark chocolate on portal hypertension in patients with cirrhosis: results of a phase 2, double-blind, randomized controlled trialAm J Clin Nutr. (2012)
  179. Quine SD1, Raghu PS. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heartPharmacol Rep. (2005)
  180. Pruijm M, et al. Effect of dark chocolate on renal tissue oxygenation as measured by BOLD-MRI in healthy volunteersClin Nephrol. (2013)
  181. Terai N1, et al. The short-term effect of flavonoid-rich dark chocolate on retinal vessel diameter in glaucoma patients and age-matched controlsActa Ophthalmol. (2014)
  182. Moreno-Ulloa A1, et al. Recovery of Indicators of Mitochondrial Biogenesis, Oxidative Stress, and Aging With (-)-Epicatechin in Senile MiceJ Gerontol A Biol Sci Med Sci. (2014)
  183. Heinrich U, et al. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in womenJ Nutr. (2006)
  184. Yoon HS, et al. Cocoa Flavanol Supplementation Influences Skin Conditions of Photo-Aged Women: A 24-Week Double-Blind, Randomized, Controlled TrialJ Nutr. (2016)
  185. Caperton C1, et al. Double-blind, Placebo-controlled Study Assessing the Effect of Chocolate Consumption in Subjects with a History of Acne VulgarisJ Clin Aesthet Dermatol. (2014)
  186. Anderson PC. Foods as the cause of acneAm Fam Physician. (1971)
  187. Block SG, et al. Exacerbation of facial acne vulgaris after consuming pure chocolateJ Am Acad Dermatol. (2011)
  188. Bedard K1, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiologyPhysiol Rev. (2007)
  189. Loffredo L1, et al. Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatmentJ Vasc Surg. (2006)
  190. Hammer A1, et al. Dark chocolate and vascular function in patients with peripheral artery disease: A randomized, controlled cross-over trialClin Hemorheol Microcirc. (2014)
  191. Rabbitt P1, et al. Losses in gross brain volume and cerebral blood flow account for age-related differences in speed but not in fluid intelligenceNeuropsychology. (2006)
  192. Spilt A1, et al. Late-onset dementia: structural brain damage and total cerebral blood flowRadiology. (2005)
  193. Commenges D1, et al. Intake of flavonoids and risk of dementiaEur J Epidemiol. (2000)
  194. Galli RL1, et al. Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficitsAnn N Y Acad Sci. (2002)
  195. Fisher ND1, Sorond FA, Hollenberg NK. Cocoa flavanols and brain perfusionJ Cardiovasc Pharmacol. (2006)
  196. Nagahama Y1, et al. Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s diseaseEur Neurol. (2003)
  197. Johnson KA1, et al. Preclinical prediction of Alzheimer’s disease using SPECTNeurology. (1998)
  198. Chan EK, et al. Dark chocolate for children’s blood pressure: randomised trialArch Dis Child. (2012)
  199. Ried K, Frank OR, Stocks NP. Dark chocolate or tomato extract for prehypertension: a randomised controlled trialBMC Complement Altern Med. (2009)