Zinok

Zincum – Zn

Medicínske upozornenie!

Základná charakteristika    

Zinok je esenciálna minerálna látka zapojená do regulácie mnohých enzýmov. Je antioxidantom a posilňuje imunitu. Najčastejšie sa užíva kvôli redukcii frekvencie ochorení dýchacích ciest a na podporu optimálneho množstva testosterónu.

Zinok je jedným z 24 mikronutrientov potrebných na prežitie. Nachádza sa v mäse, vajciach a strukovinách. Dobrým zdrojom sú aj ustrice.          

Zinok má afrodiziakálne účinky a zvyšuje hladinu testosterónu ale iba u užívateľov, ktorí majú deficit zinku. Okrem toho je zinok dôležitý pre správne fungovanie mnohých enzýmov, hormónov a imunitného systému.

Je silným antioxidantom a môže byť užitočný pri problémoch s prostatou. Vo vysokých dávkach znižuje množstvo estrogénu a pomáha regenerovať črevný hlien.

Zinok sa stráca potením, preto je dôležité jeho dopĺňanie najmä u športovcov.

Ako užívať

Zinok má stanovené dve štandardné dávky; nižšia je 5-10 mg, vyššia 25-45 mg. Nižšia dávka funguje ako denná prevencia, vyššia dávka je vhodná pre ľudí ohrozených nedostatkom zinku.

Rozličné formy doplnkov zinku obsahujú odlišné množstvo elementárneho zinku (preto si treba pozorne pozrieť informácie na obale).

Zinok by sa mal užívať denne. Je potvrdené, že dávka 100 mg denne je bezpečná pri krátkodobom užívaní (2-4 mesiace). Táto dávka je však značne vyššia ako stanovený horný tolerovateľný limit (40 mg) preto sa dlhšie užívanie takto vysokej dávky neodporúča.

Vstrebávanie zinku v tenkom čreve ovplyvňuje vstrebávanie ďalších minerálov (napr. vápnika, horčíka, železa), ktoré využívajú ten istý prenášač. Limit tohto prenášača je 800 mg a ak ho kombinácia týchto štyroch minerálov presiahne, dochádza k spomaleniu vstrebávania. Užívanie menšieho množstva ako 800 mg u týchto štyroch minerálov je v poriadku.

Biologické a vedecké súvislosti

Hlavný význam zinku v ľudskom tele spočíva v tom, že je súčasťou enzýmov nazývaných metaloproteíny.(8)(9)(10) Okrem toho je zapojený do regulácie imunitného systému.(11)(12)

Vstrebávanie

Vstrebávanie zinku je regulované tenkým črevom (38)(39) a v prípade jeho deficitu sa vstrebávanie blíži k 100 %.(38) Štúdia na zvieratách ukázala, že vplyvom starnutia dochádza k poruchám regulácie vstrebávania zinku a adekvátny príjem v potrave nemusí byť, kvôli horšiemu vstrebávaniu, dostatočný.(43)

Neurológia

Zinok sa nachádza v mozgovej kôre, pineálnej žľaze a v hipokampe, kde slúži ako atypický neuromodulátor.(46)(47)(48) V hipokampe môže koncentrácia zinku dosiahnuť 220-300mikroM, čo predstavuje približne 8 % z velkového zinku v mozgu.(49) Toto množstvo je citlivé na dlhodobý (ale nie akútny) deficit zinku.(52)  Podobne ako iné neuromodulátory sa zinok uvoľňuje zo synapsí počas akčného potenciálu.(54)

Zinok tiež môže aktivovať draselné kanále na neurónoch a znížiť uvoľňovanie glutamátu na synapsiách, čím obmedzí prenos vzruchov cez glutamínové receptory. Avšak potrebná koncentrácia je vysoká a tento efekt nie je fyziologicky relevantný.(58)

Zdá sa, že zinok zvyšuje vstrebávanie serotonínu v niektorých oblastiach mozgu (corpus callosum, cingulate cortex, raphe nucleus). Tiež je možné, že niektoré antidepresíva redukujú vstrebávanie serotonínu, ak je v týchto oblastiach príliš nízka koncentrácia zinku.(59)(60)(61)(62)

Zinok je spojený aj s funkciou BNDF (brain derived neurotrophic factor), čo je proteín, ktorý reguluje rast neurónov a ovplyvňuje plasticitu mozgu.(63)(64) Deficit zinku znižuje schopnosť BNDF aktivovať vlastné receptory(66) a sám zinok vytvára komplex s proteínom BNDF (67). Predpokladá sa, že tým aktivuje neaktívnu formu (pro-BNDF) na aktívnu formu BNDF.(68)(69)

U myší spôsobili vysoké dávky zinku v potrave (30 ppm v potrave spolu so 60 ppm vo vode) zníženie fungovania BNDF v mozgu a poruchy pamäte, ktoré boli spojené s nedostatkom zinku v hippokampe. Následné injekčné podanie zinku zvýšilo množstvo BNDF.(70) Dôvod prečo vysoký orálny príjem zinku viedol k zníženiu množstva zinku v hippokampe je neznámy.

Antidepresívny účinok zinku je zrejme sprostredkovaný zvýšením BNDF v krvnom sére, ktoré bolo pozorované u ľudí s depresiou po podávaní 30 mg zinku počas 12 týždňovej liečby.(71)

U inej skupiny sa po podávaní 25 mg zinku takéto zvýšenie neobjavilo.(72)

Vysoké koncentrácie zinku v mozgu môžu byť toxické,(73) čo sa občas pozoruje pri ischemických poškodeniach, kedy vysoká dávka zinku uvoľnená zo synapsií sprostredkuje bunkovú smrť (73)(74) a infarkty.(75) To vysvetľuje prečo chelátory zinku pomáhajú pri rehabilitácii mŕtvice.(76)

Koncentrácia zinku v krvnom sére je negatívne korelovaná s rizikom vzniku depresie a u ľudí, ktorí už depresiu majú je negatívne korelovaná so závažnosťou depresie. Podávanie 25 mg zinku alebo viac sa predbežne ukazuje ako účinná prevencia u ľudí.(71)(72)

Zinok je endogénny inhibítor glykogénsyntáza kynázy-3β (GSK3β), ktorá je zapojená do porúch nálady a depresie.(96)(97)(98)

Príjem potravy

Deficit zinku redukuje apetít a je známou príčinou anorexie (nie anorexia nervosa), čo je prvým symptómom nedostatku zinku(82) a rýchlo nasledujú symptómy depresie.(83)

Srdce a cievy

Úprava nízkej hladiny zinku do normálu je spojená so zredukovaním rizika vzniku artherosklerózy.(108)(109) Príjem zinku v potrave je negatívne korelovaný s rizikom vzniku artherosklerózy.(110)

Glukózový metabolizmus

Zinok zvyšuje syntézu glykogénu v pečeni.(96)

Zároveň pozitívne ovplyvňuje inzulínovú signalizáciu, pretože inhibuje GSK3β, ktorý potláča inzulínovú signalizáciu.(96)

Imunita

Nedostatok zinku znižuje množstvo cytokínu TNF-α (Tumor necrosis factor), po doplnení zinku sa množstvo TNF-α obnoví.(120)

Podobne reaguje na nedostatok zinku aj interleukín IL-2.(120)

Aj množstvo T-lymfocytov sa znižuje pri nedostatku zinku, čím sa znižuje aj obranyschopnosť organizmu.(122)

Metaanalýza 15 štúdií zahŕňajúcich celkovo 1360 ľudí ukázala, že podanie zinku (nie preventívne užívanie iba podanie po nástupe choroby) sa spája so znížením dĺžky a intenzity prechladnutia, ak sa zinok podá do 24 hodín od nástupu choroby.(123)

Každodenné preventívne podávanie zinku dospelým osobám znižuje frekvenciu výskytu nádchy a infekčných ochorení horných dýchacích ciest.(123)

Hormóny

Testosterón

Pri deficite zinku dochádza k poruchám premeny cholesterolu na pohlavné hormóny a redukcii expresie androgénnych receptorov. Oba tieto procesy znižujú celkový efekt pôsobenia testosterónu v organizme.(145)(146)(147)(148)

Niekoľko výskumov na potkanoch naznačuje, že vysoké dávky zinku podávané orálne a mierne dávky podávané injekčne môžu zvýšiť koncentráciu testosterónu v krvi.(149)(150)

Podobný efekt bol pozorovaný u ľudí s deficitom zinku a nízkou hladinou testosterónu. U ľudí s normálnou hladinou testosterónu sa tento efekt nepozoroval.(151)(152) 

Estrogén

Deficit zinku u potkanov sa spája so zvýšenou expresiou receptorov estrogénu;(146) u ľudí sa tento jav zatiaľ nepozoroval.

Leptín

Zvieracie štúdie(164) aj výskumy na ľuďoch(120) ukazujú, že znížené množstvo zinku je spojené so zníženou produkciou leptínu v adipocytoch.(163) Dodaním zinku sa zvýši aj koncentrácia leptínu cirkulujúceho v krvi.(120)

Jazyk a ústa

Nedostatok zinku spôsobuje zhoršenie vnímania chutí. Jeho doplnením sa tento stav napraví.(171)(172)(173) Ak je strata vnímania chutí (hypogeusia) spôsobené chemoterapiou, tak podávanie zinku nemá významný vplyv na tento stav.(174) Pozmenené vnímanie chutí po chemoterapii sa môže po podávaní zinku zlepšiť ale výsledky nie sú jednoznačné.(174)

Odstránenie deficitu zinku môže znížiť aj výskyt zubných kazov a tvorbu zubného kameňa ale dôkazy sú zatiaľ nedostatočné.(175)

Pečeň

V pečeni zinok priaznivo pôsobí na regeneráciu tkaniva a jeho podávanie má mierny terapeutický účinok na cirhózu pečene.(178)(179)(180)(181)(182)

Ucho

Podľa predbežných výsledkov zatiaľ iba jedného pokusu sa zdá, že vysoké dávky zinku (50 mg denne podávané po dobu 2 mesiacov) majú terapeutický účinok na tinitus (pískanie v ušiach).(195) Ďalšie výskumy však nepotvrdili tento výsledok.(197)

Semenníky

Nedostatok zinku sa spája so širokým spektrom porúch funkcie semenníkov, vrátane zníženej produkcie testosterónu, zníženej plodnosti a zhoršenej kvality spermií.(205)(206)(207) Väčšina týchto problémov je spôsobená zvýšenou mierou apoptózy semenníkových buniek. Apoptóza je regulovaná práve zinkom(199) nie len v semenníkoch ale aj v ostatných tkanivách.(200)(201) Ďalšou príčinou je zvýšená miera oxidačného poškodenia proteínov.(204)

Koža

U osôb postihnutých akné sa zistili nižšie hladiny zinku.(218)(219)(220) Preto sa o zinku uvažuje ako o liečive. Navyše zinok redukuje presun (chemotaxiu) bielych krviniek do kože(221)(222) a zrejme aj účinky androgénov na kožu. Pokusy so zinkom pri liečbe akné naznačujú, že štandardné až vysoké dávky zinku majú mierne protektívny účinok.(223)(224)(225)(226)

Predbežné výskumy naznačujú, že vysoké dávky zinku môžu byť účinné pri potláčaní vírusových typov bradavíc (HPV).(227) Tieto účinky pretrvávajú ešte dlhú dobu po skončení podávania zinku.(228) Účinná je aj lokálna aplikácia zinku. (229) Nevírusové typy bradavíc nie sú zinkom tak účinne potláčané.(229)

Výskumy naznačujú účinnosť zinku (pyrithión zinku) je vysoko účinný pri liečbe psoriázy.(233)(234) Dôkazy podporujúce toto tvrdenie sú však zatiaľ dosť obmedzené.

Prejavy nedostatku

Mnoho prejavov deficitu zinku je spomenutých už v časti „Biologický význam“.

Nedostatok zinku sa prejavuje kožnými poruchami, nechutenstvom, mentálnym spomalením, oneskoreným rastom u mladých a zmenšením gonád u dospelých mužov.(15)(16)

Zistilo sa, že 10 % ľudí (USA) má príjem zinku v strave nižší ako polovicu ODD.(17)(18) Celosvetovo sa deficit týka viac ako 50 % (kvôli vysokému množstvu v rozvojových krajinách).(18)

Zinok sa z tela stráca potením a cvičením(21)(22), čo je jedným z faktorov spôsobujúcich zníženie množstva testosterónu po náročnom telesnom cvičení.(23)(24)

U diabetikov (diabetes typu I aj typu II) sú zvýšené hodnoty vylučovania zinku močom (25)(26)(27), hodnoty zinku v krvnom sére môžu byť normálne,(32) zvýšené,(25)(26)(27) alebo znížené (29)(30)(31) v porovnaní s nediabetickou kontrolnou skupinou.

Odporúčaná denná dávka (ODD)

Odhadovaná priemerná denná potreba zinku je 6,5 mg pre ženy, 8,5-10 mg pre tehotné a kojace ženy a 12 mg pre mužov.

Odporúčaná denná dávka je 8 mg pre ženy, 10-12 pre tehotné a kojace ženy a 14-15 mg pre mužov. Horný tolerovateľný limit je 35-40 mg pre obe pohlavia dospelých ľudí.(13)(14)

Následky predávkovania

Zinok je najmenej toxický stopový prvok. Ani dávky 10-násobne vyššie ako odporúčané nespôsobia akútne poškodenie organizmu. Dlhodobý nadmerný príjem zinku môže spôsobiť deficit medi a železa (môže sa prejaviť anémiou), poškodenie imunitných funkcii, zvýšenie hladiny LDL a zníženie HDL cholesterolu v krvi.(262)

Prírodné zdroje

Zinok sa vo vysokých množstvách nachádza v živočíšnych tkanivách, vajciach, strukovinách a rybách. Obzvlášť vysoké množstvá sú v ustriciach (2)(3). V rozvinutých krajinách sa pridáva aj do fortifikovaných cereálií.(4)

Zinok sa často spomína ako dôležitý, pretože je kofaktorom vyše 300 enzýmov zapojených do expresie génov, delenia buniek a prenosu informácii. (5)(6)(7) Nedostatok zinku môže spomaľovať aktivitu týchto enzýmov.

Vzájomné interakcie

Železo

Oba tieto minerály sú transportované prenášačom DMT1(255) a Nramp2(256). Zinok teda súťaží pri vstrebávaní so železom a ak dôjde k nasýteniu prenášačov, zhorší sa vstrebávanie oboch prvkov. Tento efekt je zanedbateľný ak sa železo prijíma v nízkej koncentrácii. Ak je príjem oboch minerálov väčší ako 10 mg, tak sa tento kompetičný efekt začína prejavovať.(257)(258)(259)

Pokusy využívajúce potravu obohatenú železom aj zinkom nepreukázali tento vzájomne inhibičný efekt vstrebávania oboch minerálov.(260)(261) Pravdepodobne je to spôsobené tým, že prijatá potrava spomaľuje vstrebávanie oboch minerálov a nedochádza k nasýteniu prenášačov. Preto nie je vhodné užívať doplnky obsahujúce oba tieto minerály nalačno.

Literatúra

  1. Koehler K, et al. Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplementEur J Clin Nutr. (2009)
  2. Guéguen M, et al. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coastsRev Environ Contam Toxicol. (2011)
  3. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementationJ Trace Elem Med Biol. (2006)
  4. Brown KH, Hambidge KM, Ranum P; Zinc Fortification Working Group. Zinc fortification of cereal flours: current recommendations and research needsFood Nutr Bull. (2010)
  5. Prasad AS. Zinc: an overviewNutrition. (1995)
  6. Vallee BL, Falchuk KH. The biochemical basis of zinc physiologyPhysiol Rev. (1993)
  7. Haase H, Rink L. Functional significance of zinc-related signaling pathways in immune cellsAnnu Rev Nutr. (2009)
  8. Anzellotti AI, Farrell NP. Zinc metalloproteins as medicinal targetsChem Soc Rev. (2008)
  9. Vallee BL, Auld DS. Zinc metallochemistry in biochemistryEXS. (1995)
  10. Abreu IA, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variationsBiochim Biophys Acta. (2010)
  11. Prasad AS. Zinc in human health: effect of zinc on immune cellsMol Med. (2008)
  12. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zincExp Gerontol. (2008)
  13. Nutrient Reference Values for Australia and New Zealand: Zinc.
  14. Recommended Dietary Allowances: 10th Edition.
  15. Prasad AS. Clinical manifestations of zinc deficiencyAnnu Rev Nutr. (1985)
  16. Prasad AS. Zinc deficiency in human subjectsProg Clin Biol Res. (1983)
  17. Cope EC, Levenson CW. Role of zinc in the development and treatment of mood disordersCurr Opin Clin Nutr Metab Care. (2010)
  18. Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiencyBrain Res Rev. (2009)
  19. Quantifying Selected Major Risks to Health.
  20. Hambidge M. Human zinc deficiencyJ Nutr. (2000)
  21. Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activityAm J Clin Nutr. (2000)
  22. Campbell WW, Anderson RA. Effects of aerobic exercise and training on the trace minerals chromium, zinc and copperSports Med. (1987)
  23. Galbo H, et al. Thyroid and testicular hormone responses to graded and prolonged exercise in manEur J Appl Physiol Occup Physiol. (1977)
  24. Hackney AC, et al. Comparison of the hormonal responses to exhaustive incremental exercise in adolescent and young adult malesArq Bras Endocrinol Metabol. (2011)
  25. Canfield WK, Hambidge KM, Johnson LK. Zinc nutriture in type I diabetes mellitus: relationship to growth measures and metabolic controlJ Pediatr Gastroenterol Nutr. (1984)
  26. Kinlaw WB, et al. Abnormal zinc metabolism in type II diabetes mellitusAm J Med. (1983)
  27. McNair P, et al. Hyperzincuria in insulin treated diabetes mellitus–its relation to glucose homeostasis and insulin administrationClin Chim Acta. (1981)
  28. Zargar AH, et al. Copper, zinc and magnesium levels in type-1 diabetes mellitusSaudi Med J. (2002)
  29. Cellular zinc in patients with diabetes mellitus.
  30. Jansen J, et al. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zincJ Nutr Biochem. (2012)
  31. Aguilar MV, et al. Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndromeAnn Nutr Metab. (2007)
  32. Kiilerich S, et al. 65 zinc absorption in patients with insulin-dependent diabetes mellitus assessed by whole-body counting techniqueClin Chim Acta. (1990)
  33. Williams NR, et al. Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitusAnalyst. (1995)
  34. Barrie SA, et al. Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humansAgents Actions. (1987)
  35. Korolkiewicz RP, et al. Polaprezinc exerts a salutary effect on impaired healing of acute gastric lesions in diabetic ratsDig Dis Sci. (2000)
  36. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat?Clin Gastroenterol Hepatol. (2013)
  37. Mahmood A, et al. Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processesGut. (2007)
  38. Weigand E, Kirchgessner M. Homeostatic adjustments in zinc digestion to widely varying dietary zinc intakeNutr Metab. (1978)
  39. Effect of dietary zinc on 65-ZN absorption and turnover in rats.
  40. Wada L, Turnlund JR, King JC. Zinc utilization in young men fed adequate and low zinc intakesJ Nutr. (1985)
  41. Lee DY, et al. Homeostasis of zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zincJ Lab Clin Med. (1993)
  42. Taylor CM, et al. Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived menAm J Clin Nutr. (1991)
  43. Wong CP, Magnusson KR, Ho E. Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulationJ Nutr Biochem. (2012)
  44. Beiseigel JM, et al. Zinc absorption adapts to zinc supplementation in postmenopausal womenJ Am Coll Nutr. (2009)
  45. Wessells KR, et al. Plasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy menJ Nutr. (2010)
  46. Frederickson CJ, et al. Importance of zinc in the central nervous system: the zinc-containing neuronJ Nutr. (2000)
  47. Barañano DE, Ferris CD, Snyder SH. Atypical neural messengersTrends Neurosci. (2001)
  48. Choi DW, Koh JY. Zinc and brain injuryAnnu Rev Neurosci. (1998)
  49. Frederickson CJ, et al. Cytoarchitectonic distribution of zinc in the hippocampus of man and the ratBrain Res. (1983)
  50. Harrison NL, Gibbons SJ. Zn2+: an endogenous modulator of ligand- and voltage-gated ion channelsNeuropharmacology. (1994)
  51. Palm R, Hallmans G. Zinc concentrations in the cerebrospinal fluid of normal adults and patients with neurological diseasesJ Neurol Neurosurg Psychiatry. (1982)
  52. Wensink J, et al. The effect of dietary zinc deficiency on the mossy fiber zinc content of the rat hippocampus. A microbeam PIXE study. Particle Induced X-Ray EmissionHistochemistry. (1987)
  53. Baltaci AK, Mogulkoc R. Pinealectomy and melatonin administration in rats: their effects on plasma leptin levels and relationship with zincActa Biol Hung. (2007)
  54. Spontaneous and evoked release of endogenous Zn2+ in the hippocampal mossy fiber zone of the rat in situ.
  55. Sensi SL1, Yin HZ, Weiss JH. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunctionEur J Neurosci. (2000)
  56. Dineley KE1, et al. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondriaMitochondrion. (2005)
  57. Peters S, Koh J, Choi DW. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neuronsScience. (1987)
  58. Bancila V, et al. Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampusJ Neurochem. (2004)
  59. Brambilla P1, et al. Corpus callosum signal intensity in patients with bipolar and unipolar disorderJ Neurol Neurosurg Psychiatry. (2004)
  60. Wu JC1, et al. Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depressionJ Affect Disord. (1993)
  61. Reyes-Haro D1, et al. Uptake of serotonin by adult rat corpus callosum is partially reduced by common antidepressantsJ Neurosci Res. (2003)
  62. García-Colunga J1, et al. Zinc modulation of serotonin uptake in the adult rat corpus callosumJ Neurosci Res. (2005)
  63. Klein AB1, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across speciesInt J Neuropsychopharmacol. (2011)
  64. Leal G1, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticityNeuropharmacology. (2014)
  65. Adlam J1, Zaman R. The role of BDNF and memory in major depressive disorderPsychiatr Danub. (2013)
  66. Xu H1, et al. Lactational zinc deficiency-induced hippocampal neuronal apoptosis by a BDNF-independent TrkB signaling pathwayHippocampus. (2011)
  67. Travaglia A1, et al. Zinc(II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: inorganic features and biological perspectivesInorg Chem. (2013)
  68. Corona C1, et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunctionCell Death Dis. (2010)
  69. Hwang JJ1, et al. Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinasesJ Biol Chem. (2005)
  70. Yang Y1, et al. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signalingPLoS One. (2013)
  71. Solati Z, et al. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trialNutr Neurosci. (2014)
  72. Ranjbar E, et al. Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depressionNutr Neurosci. (2014)
  73. Koh JY, et al. The role of zinc in selective neuronal death after transient global cerebral ischemiaScience. (1996)
  74. Choi DW. Zinc neurotoxicity may contribute to selective neuronal death following transient global cerebral ischemiaCold Spring Harb Symp Quant Biol. (1996)
  75. Lee JM, et al. Zinc translocation accelerates infarction after mild transient focal ischemiaNeuroscience. (2002)
  76. Diener HC, et al. DP-b99, a membrane-activated metal ion chelator, as neuroprotective therapy in ischemic strokeStroke. (2008)
  77. Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorderNeuroRx. (2006)
  78. Chakrabarty K, et al. Glutamatergic dysfunction in OCDNeuropsychopharmacology. (2005)
  79. Starck G, et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severityJ Neural Transm. (2008)
  80. Coric V, et al. Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trialBiol Psychiatry. (2005)
  81. Sayyah M, et al. Evaluation of oral zinc sulfate effect on obsessive-compulsive disorder: a randomized placebo-controlled clinical trialNutrition. (2012)
  82. Neurobiology of Zinc-Influenced Eating Behavior.
  83. Tassabehji NM, et al. Zinc deficiency induces depression-like symptoms in adult ratsPhysiol Behav. (2008)
  84. Ohinata K, et al. Orally administered zinc increases food intake via vagal stimulation in ratsJ Nutr. (2009)
  85. Jing MY, Sun JY, Wang JF. The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient dietsBiol Trace Elem Res. (2008)
  86. Holst B, et al. GPR39 signaling is stimulated by zinc ions but not by obestatinEndocrinology. (2007)
  87. Inui A, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organFASEB J. (2004)
  88. Asakawa A, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilinGastroenterology. (2001)
  89. Arnold LE, et al. Zinc for attention-deficit/hyperactivity disorder: placebo-controlled double-blind pilot trial alone and combined with amphetamineJ Child Adolesc Psychopharmacol. (2011)
  90. Amani R, et al. Correlation between dietary zinc intakes and its serum levels with depression scales in young female studentsBiol Trace Elem Res. (2010)
  91. Siwek M, et al. Serum zinc level in depressed patients during zinc supplementation of imipramine treatmentJ Affect Disord. (2010)
  92. Maes M, et al. Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illnessBiol Psychiatry. (1997)
  93. Maes M, et al. Hypozincemia in depressionJ Affect Disord. (1994)
  94. Tamano H, et al. Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivationNeurochem Int. (2009)
  95. Watanabe M, et al. Susceptibility to stress in young rats after 2-week zinc deprivationNeurochem Int. (2010)
  96. Ilouz R, et al. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zincBiochem Biophys Res Commun. (2002)
  97. Gould TD, et al. Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disordersCurr Drug Targets. (2006)
  98. Little KY, et al. Altered zinc metabolism in mood disorder patientsBiol Psychiatry. (1989)
  99. Sawada T, Yokoi K. Effect of zinc supplementation on mood states in young women: a pilot studyEur J Clin Nutr. (2010)
  100. Stewart-Knox BJ, et al. Supplemented zinc does not alter mood in healthy older European adults–a randomised placebo-controlled trial: the Zenith studyPublic Health Nutr. (2011)
  101. Siwek M, et al. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled studyJ Affect Disord. (2009)
  102. Tahmasebi Boroujeni S, et al. The effect of severe zinc deficiency and zinc supplement on spatial learning and memoryBiol Trace Elem Res. (2009)
  103. Flinn JM1, et al. Enhanced zinc consumption causes memory deficits and increased brain levels of zincPhysiol Behav. (2005)
  104. Mizuno M1, et al. Involvement of BDNF receptor TrkB in spatial memory formationLearn Mem. (2003)
  105. Piechal A1, et al. Maternal zinc supplementation improves spatial memory in rat pupsBiol Trace Elem Res. (2012)
  106. Railey AM1, et al. Alterations in fear response and spatial memory in pre- and post-natal zinc supplemented rats: remediation by copperPhysiol Behav. (2010)
  107. Aquilani R, et al. Normalization of zinc intake enhances neurological retrieval of patients suffering from ischemic strokesNutr Neurosci. (2009)
  108. Hennig B, Toborek M, Mcclain CJ. Antiatherogenic properties of zinc: implications in endothelial cell metabolismNutrition. (1996)
  109. Beattie JH, Kwun IS. Is zinc deficiency a risk factor for atherosclerosisBr J Nutr. (2004)
  110. Yang YJ, et al. Dietary zinc intake is inversely related to subclinical atherosclerosis measured by carotid intima-media thicknessBr J Nutr. (2010)
  111. Bao B, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agentAm J Clin Nutr. (2010)
  112. Kelishadi R, et al. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndromeMetab Syndr Relat Disord. (2010)
  113. Jansen J, Karges W, Rink L. Zinc and diabetes–clinical links and molecular mechanismsJ Nutr Biochem. (2009)
  114. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin actionProc Natl Acad Sci U S A. (1997)
  115. Correlation between zinc status and immune function in the elderly.
  116. Meftah S, et al. Ecto 5′ nucleotidase (5’NT) as a sensitive indicator of human zinc deficiencyJ Lab Clin Med. (1991)
  117. Blostein-Fujii A, et al. Short-term zinc supplementation in women with non-insulin-dependent diabetes mellitus: effects on plasma 5′-nucleotidase activities, insulin-like growth factor I concentrations, and lipoprotein oxidation rates in vitroAm J Clin Nutr. (1997)
  118. Hashemipour M, et al. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese childrenHormones (Athens). (2009)
  119. Seet RC, et al. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels.Atherosclerosis. (2011)
  120. Mantzoros CS, et al. Zinc may regulate serum leptin concentrations in humansJ Am Coll Nutr. (1998)
  121. Prasad AS, et al. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stressAm J Clin Nutr. (2007)
  122. The Dynamic Link between the Integrity of the Immune System and Zinc Status.
  123. Singh M, Das RR. Zinc for the common coldCochrane Database Syst Rev. (2011)
  124. Ganguly A, et al. A randomized controlled trial of oral zinc in acute pneumonia in children aged between 2 months to 5 yearsIndian J Pediatr. (2011)
  125. Wadhwa N, et al. Efficacy of zinc given as an adjunct in the treatment of severe and very severe pneumonia in hospitalized children 2-24 mo of age: a randomized, double-blind, placebo-controlled trialAm J Clin Nutr. (2013)
  126. Valentiner-Branth P, et al. A randomized controlled trial of the effect of zinc as adjuvant therapy in children 2-35 mo of age with severe or nonsevere pneumonia in Bhaktapur, NepalAm J Clin Nutr. (2010)
  127. Shah GS, et al. Role of zinc in severe pneumonia: a randomized double bind placebo controlled studyItal J Pediatr. (2012)
  128. Srinivasan MG, et al. Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: a randomized double blind placebo-controlled trialBMC Med. (2012)
  129. Basnet S, et al. A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young childrenPediatrics. (2012)
  130. Valavi E, et al. The efficacy of zinc supplementation on outcome of children with severe pneumonia. A randomized double-blind placebo-controlled clinical trial.Indian J Pediatr. (2011)
  131. Chandyo RK, et al. Two weeks of zinc administration to Nepalese children with pneumonia does not reduce the incidence of pneumonia or diarrhea during the next six monthsJ Nutr. (2010)
  132. Baum MK, et al. HIV-1 infection in women is associated with severe nutritional deficienciesJ Acquir Immune Defic Syndr Hum Retrovirol. (1997)
  133. Beach RS, et al. Specific nutrient abnormalities in asymptomatic HIV-1 infectionAIDS. (1992)
  134. Jones CY, et al. Micronutrient levels and HIV disease status in HIV-infected patients on highly active antiretroviral therapy in the Nutrition for Healthy Living cohortJ Acquir Immune Defic Syndr. (2006)
  135. Graham NM, et al. Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDSJ Acquir Immune Defic Syndr. (1991)
  136. Falutz J, Tsoukas C, Gold P. Zinc as a cofactor in human immunodeficiency virus-induced immunosuppressionJAMA. (1988)
  137. Baum MK, et al. Zinc status in human immunodeficiency virus type 1 infection and illicit drug useClin Infect Dis. (2003)
  138. Tang AM, et al. Dietary micronutrient intake and risk of progression to acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus type 1 (HIV-1)-infected homosexual menAm J Epidemiol. (1993)
  139. Baum MK, et al. Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adultsClin Infect Dis. (2010)
  140. Mocchegiani E, et al. Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDSInt J Immunopharmacol. (1995)
  141. Kara E, et al. Effect of zinc supplementation on antioxidant activity in young wrestlersBiol Trace Elem Res. (2010)
  142. Chang CS, et al. Correlation between serum testosterone level and concentrations of copper and zinc in hair tissueBiol Trace Elem Res. (2011)
  143. Prasad AS, et al. Zinc status and serum testosterone levels of healthy adultsNutrition. (1996)
  144. Zeng Q, et al. Associations of urinary metal concentrations and circulating testosterone in Chinese menReprod Toxicol. (2013)
  145. Lei KY, Abbasi A, Prasad AS. Function of pituitary-gonadal axis in zinc-deficient ratsAm J Physiol. (1976)
  146. Om AS, Chung KW. Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liverJ Nutr. (1996)
  147. Chung KW, et al. Androgen receptors in ventral prostate glands of zinc deficient ratsLife Sci. (1986)
  148. Habib FK. Zinc and the steroid endocrinology of the human prostateJ Steroid Biochem. (1978)
  149. Kaya O, et al. Zinc supplementation in rats subjected to acute swimming exercise: Its effect on testosterone levels and relation with lactateNeuro Endocrinol Lett. (2006)
  150. Sankako MK, et al. Possible mechanism by which zinc protects the testicular function of rats exposed to cigarette smokePharmacol Rep. (2012)
  151. Jalali GR, et al. Impact of oral zinc therapy on the level of sex hormones in male patients on hemodialysisRen Fail. (2010)
  152. Netter A, Hartoma R, Nahoul K. Effect of zinc administration on plasma testosterone, dihydrotestosterone, and sperm countArch Androl. (1981)
  153. Shafiei Neek L, Gaeini AA, Choobineh S. Effect of zinc and selenium supplementation on serum testosterone and plasma lactate in cyclist after an exhaustive exercise boutBiol Trace Elem Res. (2011)
  154. Kilic M, et al. The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zincNeuro Endocrinol Lett. (2006)
  155. Kilic M. Effect of fatiguing bicycle exercise on thyroid hormone and testosterone levels in sedentary males supplemented with oral zincNeuro Endocrinol Lett. (2007)
  156. Stamatiadis D, Bulteau-Portois MC, Mowszowicz I. Inhibition of 5 alpha-reductase activity in human skin by zinc and azelaic acidBr J Dermatol. (1988)
  157. Fahim MS, et al. Zinc arginine, a 5 alpha-reductase inhibitor, reduces rat ventral prostate weight and DNA without affecting testicular functionAndrologia. (1993)
  158. Leake A, Chisholm GD, Habib FK. The effect of zinc on the 5 alpha-reduction of testosterone by the hyperplastic human prostate glandJ Steroid Biochem. (1984)
  159. Sugimoto Y, et al. Cations inhibit specifically type I 5 alpha-reductase found in human skinJ Invest Dermatol. (1995)
  160. Cesur Y, Yordaman N, Doğan M. Serum insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels in children with zinc deficiency and the effect of zinc supplementation on these parametersJ Pediatr Endocrinol Metab. (2009)
  161. Rodondi A, et al. Zinc increases the effects of essential amino acids-whey protein supplements in frail elderlyJ Nutr Health Aging. (2009)
  162. Konukoglu D, et al. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patientsJ Nutr Biochem. (2004)
  163. Ott ES, Shay NF. Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytesExp Biol Med (Maywood). (2001)
  164. Kwun IS, et al. Marginal zinc deficiency in rats decreases leptin expression independently of food intake and corticotrophin-releasing hormone in relation to food intakeBr J Nutr. (2007)
  165. Saladin R, et al. Transient increase in obese gene expression after food intake or insulin administrationNature. (1995)
  166. Grunfeld C, et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamstersJ Clin Invest. (1996)
  167. Beck FW, et al. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humansAm J Physiol. (1997)
  168. Human Zinc Deficiency.
  169. Gustin concentration changes relative to salivary zinc and taste in humans.
  170. Heyneman CA. Zinc deficiency and taste disordersAnn Pharmacother. (1996)
  171. Tupe RP, Chiplonkar SA. Zinc supplementation improved cognitive performance and taste acuity in Indian adolescent girlsJ Am Coll Nutr. (2009)
  172. Mahmoodi MR, Kimiagar SM. Prevalence of zinc deficiency in junior high school students of Tehran CityBiol Trace Elem Res. (2001)
  173. Hettiarachchi M, et al. Prevalence and severity of micronutrient deficiency: a cross-sectional study among adolescents in Sri LankaAsia Pac J Clin Nutr. (2006)
  174. Lyckholm L, et al. A randomized, placebo controlled trial of oral zinc for chemotherapy-related taste and smell disordersJ Pain Palliat Care Pharmacother. (2012)
  175. Uçkardeş Y, et al. The effect of systemic zinc supplementation on oral health in low socioeconomic level childrenTurk J Pediatr. (2009)
  176. Kirchhoff P, et al. Zinc salts provide a novel, prolonged and rapid inhibition of gastric acid secretionAm J Gastroenterol. (2011)
  177. Sturniolo GC, et al. Inhibition of gastric acid secretion reduces zinc absorption in manJ Am Coll Nutr. (1991)
  178. Loguercio C, et al. Trace elements and chronic liver diseasesJ Trace Elem Med Biol. (1997)
  179. Nakayama A, et al. A new diagnostic method for chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma based on serum metallothionein, copper, and zinc levelsBiol Pharm Bull. (2002)
  180. Lin CC, et al. Selenium, iron, copper, and zinc levels and copper-to-zinc ratios in serum of patients at different stages of viral hepatic diseasesBiol Trace Elem Res. (2006)
  181. Nutritional Status and Blood Trace Elements in Cirrhotic Patients.
  182. Somi MH, et al. Effects of low dose zinc supplementation on biochemical markers in non-alcoholic cirrhosis: a randomized clinical trialArch Iran Med. (2012)
  183. Sturniolo GC, et al. Zinc supplementation tightens “leaky gut” in Crohn’s diseaseInflamm Bowel Dis. (2001)
  184. Zinc Supplementation Inhibits Hepatic Apoptosis in Mice Subjected to a Long-Term Ethanol Exposure.
  185. Preservation of Intestinal Structural Integrity by Zinc Is Independent of Metallothionein in Alcohol-Intoxicated Mice.
  186. Zhou Z, et al. Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stressAm J Pathol. (2005)
  187. Zinc Deficiency Mediates Alcohol-Induced Alveolar Epithelial and Macrophage Dysfunction in Rats.
  188. Kang YJ, Zhou Z. Zinc prevention and treatment of alcoholic liver diseaseMol Aspects Med. (2005)
  189. Kang WS, et al. Effects of a zinc-deficient diet on hearing in CBA miceNeuroreport. (2012)
  190. Hoeve LJ, Wensink J, Mertens zur Borg IR. Hearing loss related to zinc deficiency in ratsEur Arch Otorhinolaryngol. (1990)
  191. Franco-Vidal V, et al. Zinc protection against pneumolysin toxicity on rat cochlear hair cellsAudiol Neurootol. (2008)
  192. Coelho CB, Tyler R, Hansen M. Zinc as a possible treatment for tinnitusProg Brain Res. (2007)
  193. Sha SH, et al. Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing lossAudiol Neurootol. (2001)
  194. Shambaugh GE Jr. Zinc for tinnitus, imbalance, and hearing loss in the elderlyAm J Otol. (1986)
  195. Arda HN, et al. The role of zinc in the treatment of tinnitusOtol Neurotol. (2003)
  196. Ochi K, et al. Zinc deficiency and tinnitusAuris Nasus Larynx. (2003)
  197. Yetiser S, et al. The role of zinc in management of tinnitusAuris Nasus Larynx. (2002)
  198. Yang CH, et al. Zinc in the treatment of idiopathic sudden sensorineural hearing lossLaryngoscope. (2011)
  199. Kumari D, Nair N, Bedwal RS. Testicular apoptosis after dietary zinc deficiency: ultrastructural and TUNEL studiesSyst Biol Reprod Med. (2011)
  200. Clegg MS, et al. Zinc deficiency-induced cell deathIUBMB Life. (2005)
  201. Nodera M, Yanagisawa H, Wada O. Increased apoptosis in a variety of tissues of zinc-deficient ratsLife Sci. (2001)
  202. Kumari D, Nair N, Bedwal RS. Protein carbonyl, 3β-, and 17β-hydroxysteroid dehydrogenases in testes and serum FSH, LH, and testosterone levels in zinc deficient Wistar ratsBiofactors. (2012)
  203. Bahuguna A, Bedwal RS. Testicular protein profile (SDS-PAGE) study of zinc deficient Wistar albino ratIndian J Exp Biol. (2008)
  204. Kumari D, Nair N, Bedwal RS. Effect of dietary zinc deficiency on testes of Wistar rats: Morphometric and cell quantification studiesJ Trace Elem Med Biol. (2011)
  205. Merrells KJ, et al. Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing ratsBr J Nutr. (2009)
  206. Croxford TP, McCormick NH, Kelleher SL. Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in miceJ Nutr. (2011)
  207. Yamaguchi S, et al. Zinc is an essential trace element for spermatogenesisProc Natl Acad Sci U S A. (2009)
  208. Sangthawan D, Phungrassami T, Sinkitjarurnchai W. A randomized double-blind, placebo-controlled trial of zinc sulfate supplementation for alleviation of radiation-induced oral mucositis and pharyngitis in head and neck cancer patientsJ Med Assoc Thai. (2013)
  209. Saadeh CE. Chemotherapy- and radiotherapy-induced oral mucositis: review of preventive strategies and treatmentPharmacotherapy. (2005)
  210. Mansouri A, et al. The effect of zinc sulfate in the prevention of high-dose chemotherapy-induced mucositis: a double-blind, randomized, placebo-controlled studyHematol Oncol. (2012)
  211. Arbabi-kalati F, et al. Evaluation of the efficacy of zinc sulfate in the prevention of chemotherapy-induced mucositis: a double-blind randomized clinical trialArch Iran Med. (2012)
  212. Ertekin MV, et al. Zinc sulfate in the prevention of radiation-induced oropharyngeal mucositis: a prospective, placebo-controlled, randomized studyInt J Radiat Oncol Biol Phys. (2004)
  213. Halyard MY. Taste and smell alterations in cancer patients–real problems with few solutionsJ Support Oncol. (2009)
  214. Hong JH, et al. Taste and odor abnormalities in cancer patientsJ Support Oncol. (2009)
  215. Henkin RI, Martin BM, Agarwal RP. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: an enzyme disorder manifested by gustatory and olfactory dysfunctionAm J Med Sci. (1999)
  216. Henkin RI, Martin BM, Agarwal RP. Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI deficiencyAm J Med Sci. (1999)
  217. Dreno B, et al. Acne: evolution of the clinical practice and therapeutic management of acne between 1996 and 2000Eur J Dermatol. (2003)
  218. Ozuguz P, et al. Evaluation of serum vitamins A and E and zinc levels according to the severity of acne vulgarisCutan Ocul Toxicol. (2013)
  219. Michaëlsson G, Vahlquist A, Juhlin L. Serum zinc and retinol-binding protein in acneBr J Dermatol. (1977)
  220. Nasiri S, et al. Serum zinc levels in Iranian patients with acneClin Exp Dermatol. (2009)
  221. Leibovici V, et al. Effect of zinc therapy on neutrophil chemotaxis in psoriasisIsr J Med Sci. (1990)
  222. Dreno B, et al. Zinc salts effects on granulocyte zinc concentration and chemotaxis in acne patientsActa Derm Venereol. (1992)
  223. Göransson K, Lidén S, Odsell L. Oral zinc in acne vulgaris: a clinical and methodological studyActa Derm Venereol. (1978)
  224. Verma KC, Saini AS, Dhamija SK. Oral zinc sulphate therapy in acne vulgaris: a double-blind trialActa Derm Venereol. (1980)
  225. Dreno B, et al. Multicenter randomized comparative double-blind controlled clinical trial of the safety and efficacy of zinc gluconate versus minocycline hydrochloride in the treatment of inflammatory acne vulgarisDermatology. (2001)
  226. Dreno B, et al. Low doses of zinc gluconate for inflammatory acneActa Derm Venereol. (1989)
  227. Mun JH, et al. Oral zinc sulfate treatment for viral warts: an open-label studyJ Dermatol. (2011)
  228. Al-Gurairi FT, Al-Waiz M, Sharquie KE. Oral zinc sulphate in the treatment of recalcitrant viral warts: randomized placebo-controlled clinical trialBr J Dermatol. (2002)
  229. Sharquie KE, Khorsheed AA, Al-Nuaimy AA. Topical zinc sulphate solution for treatment of viral wartsSaudi Med J. (2007)
  230. Chapter 43. Rosacea, Perioral Dermatitis and Similar Dermatoses, Flushing and Flushing Syndromes.
  231. Sharquie KE, Najim RA, Al-Salman HN. Oral zinc sulfate in the treatment of rosacea: a double-blind, placebo-controlled studyInt J Dermatol. (2006)
  232. Bamford JT, et al. Randomized, double-blind trial of 220 mg zinc sulfate twice daily in the treatment of rosaceaInt J Dermatol. (2012)
  233. Crutchfield CE 3rd, Lewis EJ, Zelickson BD. The highly effective use of topical zinc pyrithione in the treatment of psoriasis: a case reportDermatol Online J. (1997)
  234. Sadeghian G, Ziaei H, Nilforoushzadeh MA. Treatment of localized psoriasis with a topical formulation of zinc pyrithioneActa Dermatovenerol Alp Panonica Adriat. (2011)
  235. Kashefi F1, et al. Comparison of the effect of ginger and zinc sulfate on primary dysmenorrhea: a placebo-controlled randomized trialPain Manag Nurs. (2014)
  236. Boom A1, et al. Bimodal modulation of tau protein phosphorylation and conformation by extracellular Zn2+ in human-tau transfected cellsBiochim Biophys Acta. (2009)
  237. Mo ZY1, et al. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322J Biol Chem. (2009)
  238. Cuajungco MP1, Fagét KY. Zinc takes the center stage: its paradoxical role in Alzheimer’s diseaseBrain Res Brain Res Rev. (2003)
  239. Bush AI1, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesisNeurotherapeutics. (2008)
  240. Harris LA, et al. Celiac disease: clinical, endoscopic, and histopathologic reviewGastrointest Endosc. (2012)
  241. Rostom A, et al. The diagnostic accuracy of serologic tests for celiac disease: a systematic reviewGastroenterology. (2005)
  242. Singhal N, et al. Serum zinc levels in celiac diseaseIndian Pediatr. (2008)
  243. Solomons NW, Rosenberg IH, Sandstead HH. Zinc nutrition in celiac sprueAm J Clin Nutr. (1976)
  244. Rawal P, et al. Zinc supplementation to patients with celiac disease–is it requiredJ Trop Pediatr. (2010)
  245. Najafabadi MM, et al. Zinc sulfate for relief of pruritus in patients on maintenance hemodialysisTher Apher Dial. (2012)
  246. Wilborn CD, et al. Effects of Zinc Magnesium Aspartate (ZMA) Supplementation on Training Adaptations and Markers of Anabolism and CatabolismJ Int Soc Sports Nutr. (2004)
  247. Roehrborn CG, et al. Effects of finasteride on serum testosterone and body mass index in men with benign prostatic hyperplasiaUrology. (2003)
  248. Uddin RK, Singh SM. Ethanol-responsive genes: identification of transcription factors and their role in metabolomicsPharmacogenomics J. (2007)
  249. Carey LC, et al. Maternal ethanol exposure is associated with decreased plasma zinc and increased fetal abnormalities in normal but not metallothionein-null miceAlcohol Clin Exp Res. (2000)
  250. Carey LC, et al. Ethanol decreases zinc transfer to the fetus in normal but not metallothionein-null miceAlcohol Clin Exp Res. (2000)
  251. Carey LC, et al. Zinc supplementation at the time of ethanol exposure ameliorates teratogenicity in miceAlcohol Clin Exp Res. (2003)
  252. Summers BL, Rofe AM, Coyle P. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in miceAlcohol Clin Exp Res. (2009)
  253. Summers BL, et al. Dietary zinc supplementation during pregnancy prevents spatial and object recognition memory impairments caused by early prenatal ethanol exposureBehav Brain Res. (2008)
  254. Summers BL, Rofe AM, Coyle P. Prenatal zinc treatment at the time of acute ethanol exposure limits spatial memory impairments in mouse offspringPediatr Res. (2006)
  255. Gunshin H, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporterNature. (1997)
  256. Tandy S, et al. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cellsJ Biol Chem. (2000)
  257. Olivares M, et al. Acute inhibition of iron bioavailability by zinc: studies in humansBiometals. (2012)
  258. Olivares M, Pizarro F, Ruz M. New insights about iron bioavailability inhibition by zincNutrition. (2007)
  259. Olivares M, Pizarro F, Ruz M. Zinc inhibits nonheme iron bioavailability in humansBiol Trace Elem Res. (2007)
  260. Friel JK, et al. Elevated intakes of zinc in infant formulas don not interfere with iron absorption in premature infantsJ Pediatr Gastroenterol Nutr. (1998)
  261. Olivares M, et al. Effect of increasing concentrations of zinc on the absorption of iron from iron-fortified milkBiol Trace Elem Res. (2012)
  262. Bukovský, I. 2009. Miniencyklopédia prírodnej liečby. 1. vyd. Bratislava: AKV –ambulancia klinickej výživy, 2009. 224 s. ISBN 978-80-970230-0-3