Meď

Cuprum – Cu

Medicínske upozornenie!

Základná charakteristika

Meď je nepostrádeteľným stopovým prvkom pre antioxidačné enzýmy ľudského tela. Dostatok medi získame z bežnej stravy a vody. O užitočnosti konzumácie doplnkov medi existuje iba málo dôkazov. Pri niektorých prípadoch Alzheimerovej choroby sa vyskytuje nadbytok medi v tele.

Meď telo používa na mnoho rozličných procesov. Jej hlavnou funkciou je katalyzácia oxidačno-redukčných reakcií, ktoré sú dôležité pre správne fungovanie mnohých enzýmov.

Chemické reakcie katalyzované meďou sú nevyhnutné aj pre imunitné funkcie. Vekom postupne stúpa množstvo medi v tele. Tento vzostup je strmší u ľudí postihnutých Alzheimerovou chorobou. Množstvo medi sa spája aj so závažnosťou symptómov Alzheimerovej choroby. Preto niektorí odborníci odporúčajú znížiť príjem medi u starých ľudí.

Celkovo sa v priemernom ľudskom tele (hmotnosť 70 kg)  nachádza približne 110 mg medi. Väčšina z nej (47 %) sa nachádza v kostiach, 27 % v kostrovej svalovine, 9 % v mozgu, 6 % cirkuluje v krvi a zvyšok sa skladuje v pečeni.(67)(68) Väčšina medi v krvi (85-95 %) je pevne viazaná na proteín ceruloplasmin. Zvyšok je voľne viazaný na albumín a označuje sa ako voľná meď.(46)

Jej množstvo je zdravotne významnejšie, pretože sa ľahko uvoľňuje a pôsobí v okolitých tkanivách. Jej nahromadenie môže spôsobiť niektoré ochorenia (napr. Wilsonovu chorobu).(63) Tieto choroby sa spájajú so zníženou hladinou ceruloplazmínu, čím dôjde k zvýšeniu množstva voľnej medi,(64) ale nie je to jediná príčina.(65)

Biologické a vedecké súvislosti

Meď je dôležitým kofaktorom mnohých enzýmov, ktoré v tele katalyzujú redoxné reakcie.(5)(6) Zo zdravotného hľadiska patrí k najdôležitejším takýmto enzýmom meď, zinok superoxid dismutáza (Cu,Zn-SOD),(7) kde meď v spolupráci so zinkom transformuje toxické anióny superoxidu na peroxid.(8)(9) SOD vykazuje aj nešpecifickú peroxidázovú aktivitu závislú na CO2. Pritom dochádza k oxidácii CO2 na CO3(8)(9), ktorý potom slúži ako oxidovaný medziprodukt bunkového metabolizmu.(11)(12)

Existuje aj varianta SOD, ktorá namiesto medi a zinku využíva mangán.(13) Oba tieto enzýmy majú rovnakú funkciu,(14) hlavný rozdiel spočíva v tom kde v tele sa každý enzým vyskytuje.

Okrem kofaktoru enzýmov sú ióny medi dôležitými stimulantami imunitného systému a ich nedostatok zhoršuje odpoveď na antigény(15)(16) a môže spôsobiť zníženie počtu neutrofilov.(17)(18) Treba si však uvedomiť, že meď je stopový prvok a na dosiahnutie optimálneho zdravia stačia relatívne nízke koncentrácie. Vo vysokých koncentráciách je meď toxická!

Vstrebávanie

Pri vstrebávaní medi zohráva dôležitú úlohu kyslé prostredie žalúdka, ktoré uvoľňuje meď viazanú v potrave.(43) Väčšina medi v potravinách je viazaná v komplexoch s inými molekulami. Takáto meď sa môže vstrebávať do organizmu až po uvoľnení z týchto komplexov. Voľná meď sa môže vstrebávať priamo cez sliznicu žalúdka alebo v tenkom čreve.(44) V čreve je vstrebávanie medi sprostredkované rovnakým prenášačom ako vstrebávanie zinku (prenášač TnTs)(48)(49) a aj bežným bivalentným prenášačom katiónov DMT1(50), ktorý prenáša aj ostatné minerály.(51) Meď má aj vlastný prenášač CRT1, ktorý môže sprostredkovávať aj prenos zinku a železa.(51) Ak je meď viazaná v komplexoch s aminokyselinami, tak pri jej vstrebávaní pomáhajú aj prenášače aminokyselín.(52)

Účinnosť vstrebávania medi z potravy je okolo 30-40 %,(53) no medzi jedincami sú značné rozdiely aj keď ich strava obsahuje rovnaké množstvo medi.(54) 

Ukazuje sa, že meď viazanú v potrave spracováva telo inak ako meď obsiahnutú vo vode alebo výživových doplnkoch.(46) Voľná meď sa vstrebáva rýchlo a rýchlo sa objaví v krvi. Meď viazaná v potrave sa vstrebáva pomalšie a je spracovávaná v pečeni.(47)

Vysoká koncentrácia zinku v tenkom čreve môže naštartovať syntézu bielkoviny – metalotioneín, ktorý viaže zinok a aj meď, čím znižuje vstrebávanie oboch prvkov.(55)(56) Syntézu tohto proteínu môže spustiť aj meď.(57) Meď sa ale zvyčajne neužíva v množstvách, ktoré by interferovali so vstrebávaním zinku.(58)

Vstrebávaniu medi môže napomôcť vysokoproteínová diéta.(60)(61) Naopak vysoký príjem fytokyselín môže absorpciu medi redukovať.(59)

Neurológia

Meď môže prispievať k oxidačnému stresu, ktorý zohráva úlohu pri vzniku úzkostných porúch.(69) Navyše meď inhibuje GABA receptory(70)(71) a správny prenos vzruchov cez tieto receptory tiež zohráva úlohu pri úzkostných poruchách a depresii.(72)

U pacientov s depresiou sú konzistentne zvýšené hodnoty medi v krvi.(75)(76)(77)

Srdcovo-cievny systém

U ľudí s chorobami srdca sa často zisťuje nízke množstvo medi v srdcovom tkanive, pričom zároveň býva zvýšené množstvo medi v krvi.(78)(79)(80)(81)(82)

Pri cukrovke typu 2 pomáhajú chelátory medi zmierniť hypertrofiu ľavej srdcovej komory.(83)(84)

Množstvo medi v krvnom sére súvisí aj s aterosklerózou, pričom vyššie hodnoty korelujú so závažnejšími poškodeniami artérií.(88) Pri ateroskleróze sa tiež pozorovalo vyššie množstvo medi v stene tepien.(89)

Znížené množstvo plazmatickej medi sa vyskytuje u ľudí s diagnostikovanou hypertenziou.(90)

Meď nemá žiadny efekt na množstvo cholesterolu ani na lipidový profil krvnej plazmy.(85)(91)(92)(93)

Imunitný systém

Meď je dôležitá pre správnu funkciu bielych krviniek a pomáha makrofágom a neutrofilným granulocytom likvidovať prenikajúce patogény, pretože zohráva dôležitú úlohu v procese produkcie toxických reaktívnych foriem kyslíka vo fagozómoch (fagocytovaných baktériách obalených bunkovou membránou).(112)(113)(114)(115)(116)

Prejavy nedostatku

Nedostatok medi sa vyskytuje pomerne vzácne. Ak zásoby medi v tele poklesnú, tak sa zvýši jej vstrebávanie v tenkom čreve.(23) Podobne ak klesne množstvo medi v strave, tak sa jej vstrebávanie stane efektívnejšie.(22)

Pokusy na laboratórnych potkanoch ukázali, že nedostatočný príjem medi sa spája so zvýšeným výskytom zápalov, pozmenenou funkciou kardiovaskulárneho systému, pozmenenou štruktúrou mitochondrií a chybnou funkciou srdca.(28)(29) K zmenám dochádza aj v toku krvi a zvyšuje sa krvácavosť.(30)(31) Tieto zmeny sú vratné a odstránia sa po návrate medi na dostatočnú úroveň.(36)(37)

Skutočný deficit medi vyúsťuje do neurologických problémov podobných nedostatku vitamínu B12. Avšak takéto stavy sa zaznamenali iba ako následok vážnych gastrointestinálnych operačných zákrokov, po ktorých bolo významne narušené vstrebávanie medi.(38)(39)(40)

Prírodné zdroje

Meď je bežne prítomná v potrave(1) a pitnej vode.(2)

Odporúčaná denná dávka (ODD)

Doplnkové preparáty zvyčajne obsahujú 1 mg medi, ale momentálne sa zdá, že na doplnkové užívanie medi nie je žiadny významný dôvod. Dávky do 1 mg sa zdajú byť bezpečné počas krátkodobého užívania, ale vyšším dávkam sa treba vyhýbať.

ODD sú:(5)(19)

  • 0,34 mg pre deti 1-3 roky
  • 0,44 mg pre deti 4-8 rokov
  • 0,7 mg pre deti 9-13
  • 0,89 mg pre adolescentov 14-18
  • 0,9 mg pre dospelých oboch pohlaví

Dávka sa zvyšuje na 1 mg pre tehotné ženy a na 1,3 mg pre  ženy počas kojenia.(5)(19)

U seniorov sa odporúča dávka 0,9 mg hoci niektoré zdroje odporúčajú nižšie dávky.(20)(21)

V rozvinutých krajinách je ODD medi dostatočne zabezpečená bežnou stravou.

Vzájomné interakcie

Zinok

Vysoké dávky zinku môžu brániť absorpcii medi. V extrémnom prípade to môže vyústiť ku kognitívnym poruchám až smrti v dôsledku nedostatku medi. Pri bežných doplnkoch stravy (15-50 mg zinku) je nepravdepodobný vznik deficitu medi. Všetky známe prípady zinkom spôsobeného deficitu medi vznikli v dôsledku náhodného predávkovania zinkom (500 mg a viac).(144)(145)(146)(147)(148)(150)(151)(152)(153)(154)

Aminokyseliny

Meď má množstvo interakcií s aminokyselinami najmä v tenkom čreve, kde môže dôjsť k zlepšeniu aj zhoršeniu jej vstrebávania. Zdá sa, že zvýšený príjem proteínov podporuje vstrebávanie medi.(52)(53)(60) Niektoré aminokyseliny (L-histidín) znižujú vstrebávanie medi,(155) a iné ho zlepšujú (glycín, L-tryptofán, L-metionín).(52)

Literatúra

  1. Subar AF1, et al. Dietary sources of nutrients among US adults, 1989 to 1991J Am Diet Assoc. (1998)
  2. Sadhra SS1, Wheatley AD, Cross HJ. Dietary exposure to copper in the European Union and its assessment for EU regulatory risk assessmentSci Total Environ. (2007)
  3. Abdel-Mageed AB1, Oehme FW. A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: II. CopperVet Hum Toxicol. (1990)
  4. Copper in Drinking Water.
  5. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc.
  6. Ridge PG1, Zhang Y, Gladyshev VN. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygenPLoS One. (2008)
  7. Liochev SI1, Fridovich I. Mechanism of the peroxidase activity of Cu, Zn superoxide dismutaseFree Radic Biol Med. (2010)
  8. Tainer JA, et al. Structure and mechanism of copper, zinc superoxide dismutaseNature. (1983)
  9. Getzoff ED, et al. Electrostatic recognition between superoxide and copper, zinc superoxide dismutaseNature. (1983)
  10. Liochev SI1, Fridovich I. CO2, not HCO3-, facilitates oxidations by Cu,Zn superoxide dismutase plus H2O2Proc Natl Acad Sci U S A. (2004)
  11. Chen SN, Hoffman MZ. Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solutionRadiat Res. (1973)
  12. Medinas DB1, et al. The carbonate radical and related oxidants derived from bicarbonate bufferIUBMB Life. (2007)
  13. Manganese superoxide dismutase, MnSOD and its mimics.
  14. Liochev SI1, Fridovich I. Carbon dioxide mediates Mn(II)-catalyzed decomposition of hydrogen peroxide and peroxidation reactionsProc Natl Acad Sci U S A. (2004)
  15. Blakley BR, Hamilton DL. The effect of copper deficiency on the immune response in miceDrug Nutr Interact. (1987)
  16. Koller LD, et al. Immune dysfunction in rats fed a diet deficient in copperAm J Clin Nutr. (1987)
  17. Percival SS1. Copper and immunityAm J Clin Nutr. (1998)
  18. Williams DM. Copper deficiency in humansSemin Hematol. (1983)
  19. Dietary Reference Intake for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids.
  20. Squitti R1, Siotto M2, Polimanti R3. Low-copper diet as a preventive strategy for Alzheimer’s diseaseNeurobiol Aging. (2014)
  21. Barnard ND1, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s diseaseNeurobiol Aging. (2014)
  22. Turnlund JR1, et al. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65CuAm J Clin Nutr. (1989)
  23. Cunnane SC, Horrobin DF, Manku MS. Contrasting effects of low or high copper intake on rat tissue lipid essential fatty acid compositionAnn Nutr Metab. (1985)
  24. Saltzman E1, Karl JP. Nutrient deficiencies after gastric bypass surgeryAnnu Rev Nutr. (2013)
  25. Kumar N1, McEvoy KM, Ahlskog JE. Myelopathy due to copper deficiency following gastrointestinal surgeryArch Neurol. (2003)
  26. Plantone D1, et al. PPIs as possible risk factor for copper deficiency myelopathyJ Neurol Sci. (2015)
  27. Sakai N1, et al. Marginal copper deficiency increases liver neutrophil accumulation after ischemia/reperfusion in ratsBiol Trace Elem Res. (2011)
  28. Li Y1, et al. Marginal dietary copper restriction induces cardiomyopathy in ratsJ Nutr. (2005)
  29. Wildman RE1, et al. Marginal copper-restricted diets produce altered cardiac ultrastructure in the ratProc Soc Exp Biol Med. (1995)
  30. Schuschke DA1, et al. Relationship between dietary copper concentration and acetylcholine-induced vasodilation in the microcirculation of ratsBiofactors. (1999)
  31. Schuschke LA1, et al. Hemostatic mechanisms in marginally copper-deficient ratsJ Lab Clin Med. (1995)
  32. Schuschke DA1, et al. Cyclooxygenase-2 is upregulated in copper-deficient ratsInflammation. (2009)
  33. Lentsch AB1, et al. Augmented metalloproteinase activity and acute lung injury in copper-deficient ratsAm J Physiol Lung Cell Mol Physiol. (2001)
  34. Schuschke DA1, et al. Tissue-specific ICAM-1 expression and neutrophil transmigration in the copper-deficient ratInflammation. (2002)
  35. Elsherif L1, et al. Congestive heart failure in copper-deficient miceExp Biol Med (Maywood). (2003)
  36. Davidson J1, Medeiros DM, Hamlin RL. Cardiac ultrastructural and electrophysiological abnormalities in postweanling copper-restricted and copper-repleted rats in the absence of hypertrophyJ Nutr. (1992)
  37. Elsherif L1, et al. Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in miceJ Nutr. (2004)
  38. Plantone D, et al. Copper deficiency myelopathy: A report of two casesJ Spinal Cord Med. (2014)
  39. Kumar N1, Gross JB Jr, Ahlskog JE. Copper deficiency myelopathy produces a clinical picture like subacute combined degenerationNeurology. (2004)
  40. Kumar N1, et al. Imaging features of copper deficiency myelopathy: a study of 25 casesNeuroradiology. (2006)
  41. Imani S1, et al. Changes in copper and zinc serum levels in women wearing a copper TCu-380A intrauterine deviceEur J Contracept Reprod Health Care. (2014)
  42. Rodrigues da Cunha AC1, Dorea JG, Cantuaria AA. Intrauterine device and maternal copper metabolism during lactationContraception. (2001)
  43. Gollan GL. Studies on the nature of complexes formed by copper with human alimentary secretions and their influence on copper absorption in the ratClin Sci Mol Med. (1975)
  44. VANCAMPEN DR, MITCHELL EA. ABSORPTION OF CU-64, ZN-65, MO-99, AND FE-59 FROM LIGATED SEGMENTS OF THE RAT GASTROINTESTINAL TRACTJ Nutr. (1965)
  45. Fields M, et al. Contrasting effects of the stomach and small intestine of rats on copper absorptionJ Nutr. (1986)
  46. Brewer GJ. Risks of copper and iron toxicity during aging in humansChem Res Toxicol. (2010)
  47. Hill GM, et al. Treatment of Wilson’s disease with zinc. II. Validation of oral 64copper with copper balanceAm J Med Sci. (1986)
  48. Murgia C1, et al. Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cellsAm J Physiol. (1999)
  49. Árus D1, et al. A comparative study on the possible zinc binding sites of the human ZnT3 zinc transporter proteinDalton Trans. (2013)
  50. Arredondo M1, et al. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cellsAm J Physiol Cell Physiol. (2003)
  51. Espinoza A1, et al. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNABiol Trace Elem Res. (2012)
  52. Gao S1, et al. Amino acid facilitates absorption of copper in the Caco-2 cell culture modelLife Sci. (2014)
  53. Wapnir RA. Copper absorption and bioavailabilityAm J Clin Nutr. (1998)
  54. Turnlund JR, et al. A stable isotope study of copper absorption in young men: effect of phytate and alpha-celluloseAm J Clin Nutr. (1985)
  55. Hall AC, Young BW, Bremner I. Intestinal metallothionein and the mutual antagonism between copper and zinc in the ratJ Inorg Biochem. (1979)
  56. Fischer PW, Giroux A, L’Abbé MR. The effect of dietary zinc on intestinal copper absorptionAm J Clin Nutr. (1981)
  57. Kumar KS1, Dayananda S, Subramanyam C. Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassaFEMS Microbiol Lett. (2005)
  58. Oestreicher P, Cousins RJ. Copper and zinc absorption in the rat: mechanism of mutual antagonismJ Nutr. (1985)
  59. Davies NT, Nightingale R. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in ratsBr J Nutr. (1975)
  60. Greger JL, Snedeker SM. Effect of dietary protein and phosphorus levels on the utilization of zinc, copper and manganese by adult malesJ Nutr. (1980)
  61. Sandstead HH. Copper bioavailability and requirementsAm J Clin Nutr. (1982)
  62. MOORE T, et al. COPPER DEFICIENCY IN RATS FED UPON RAW MEATBr J Nutr. (1964)
  63. Ferenci P. Wilson’s diseaseClin Liver Dis. (1998)
  64. Brewer GJ1, et al. Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientineTransl Res. (2009)
  65. Yüce A1, et al. Wilson’s disease patients with normal ceruloplasmin levelsTurk J Pediatr. (1999)
  66. Squitti R1, et al. Free copper distinguishes mild cognitive impairment subjects from healthy elderly individualsJ Alzheimers Dis. (2011)
  67. Squitti R1, Polimanti R. Copper phenotype in Alzheimer’s disease: dissecting the pathwayAm J Neurodegener Dis. (2013)
  68. Linder MC1, Hazegh-Azam M. Copper biochemistry and molecular biologyAm J Clin Nutr. (1996)
  69. Hassan W1, et al. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventionsCurr Neuropharmacol. (2014)
  70. Sharonova IN1, Vorobjev VS, Haas HL. High-affinity copper block of GABA(A) receptor-mediated currents in acutely isolated cerebellar Purkinje cells of the rat.Eur J Neurosci. (1998)
  71. Kim H1, Macdonald RL. An N-terminal histidine is the primary determinant of alpha subunit-dependent Cu2+ sensitivity of alphabeta3gamma2L GABA(A) receptorsMol Pharmacol. (2003)
  72. Kalueff AV1, Nutt DJ. Role of GABA in anxiety and depressionDepress Anxiety. (2007)
  73. Islam MR1, et al. Comparative analysis of serum zinc, copper, manganese, iron, calcium, and magnesium level and complexity of interelement relations in generalized anxiety disorder patientsBiol Trace Elem Res. (2013)
  74. Russo AJ1. Decreased zinc and increased copper in individuals with anxietyNutr Metab Insights. (2011)
  75. Schlegel-Zawadzka M1, et al. Is serum copper a “trait marker” of unipolar depression? A preliminary clinical studyPol J Pharmacol. (1999)
  76. Chang MY1, Tseng CH, Chiou YL. The plasma concentration of copper and prevalence of depression were positively correlated in shift nursesBiol Res Nurs. (2014)
  77. Crayton JW1, Walsh WJ. Elevated serum copper levels in women with a history of post-partum depressionJ Trace Elem Med Biol. (2007)
  78. Russo AJ1. Analysis of plasma zinc and copper concentration, and perceived symptoms, in individuals with depression, post zinc and anti-oxidant therapyNutr Metab Insights. (2011)
  79. Klevay LM. Cardiovascular disease from copper deficiency–a historyJ Nutr. (2000)
  80. Allen KG, Klevay LM. Copper: an antioxidant nutrient for cardiovascular healthCurr Opin Lipidol. (1994)
  81. Reunanen A, Knekt P, Aaran RK. Serum ceruloplasmin level and the risk of myocardial infarction and strokeAm J Epidemiol. (1992)
  82. Ford ES. Serum copper concentration and coronary heart disease among US adultsAm J Epidemiol. (2000)
  83. Cooper GJ, et al. A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study.Diabetologia. (2009)
  84. Lind PM, Olsén L, Lind L. Elevated circulating levels of copper and nickel are found in elderly subjects with left ventricular hypertrophyEcotoxicol Environ Saf. (2012)
  85. DiSilvestro RA, et al. A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health.Metabolism. (2012)
  86. Vaughan DE. PAI-1 and atherothrombosisJ Thromb Haemost. (2005)
  87. Bügel S, et al. Effect of copper supplementation on indices of copper status and certain CVD risk markers in young healthy womenBr J Nutr. (2005)
  88. Bagheri B, et al. Serum level of copper in patients with coronary artery diseaseNiger Med J. (2015)
  89. Iskra M, Majewski W, Piorunska-Stolzmann M. Modifications of magnesium and copper concentrations in serum and arterial wall of patients with vascular diseases related to ageing, atherosclerosis and aortic aneurysmMagnes Res. (2002)
  90. Russo C, et al. Anti-oxidant status and lipid peroxidation in patients with essential hypertensionJ Hypertens. (1998)
  91. Jones AA, et al. Copper supplementation of adult men: effects on blood copper enzyme activities and indicators of cardiovascular disease riskMetabolism. (1997)
  92. Rojas-Sobarzo L, et al. Copper supplementation at 8 mg neither affects circulating lipids nor liver function in apparently healthy Chilean menBiol Trace Elem Res. (2013)
  93. Turley E, et al. Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation (FOODCUE project).Free Radic Biol Med. (2000)
  94. Keil HL, Nelson VE. THE RÔLE OF COPPER IN CARBOHYDRATE METABOLISMJ Biol Chem. (1934)
  95. Kazi TG1, et al. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patientsBiol Trace Elem Res. (2008)
  96. Ekmekcioglu C1, et al. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controlsBiol Trace Elem Res. (2001)
  97. Walter RM Jr1, et al. Copper, zinc, manganese, and magnesium status and complications of diabetes mellitusDiabetes Care. (1991)
  98. Savu O1, et al. Increase in total antioxidant capacity of plasma despite high levels of oxidative stress in uncomplicated type 2 diabetes mellitusJ Int Med Res. (2012)
  99. Aguilar MV1, et al. Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndromeAnn Nutr Metab. (2007)
  100. Williams NR1, et al. Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitusAnalyst. (1995)
  101. Viktorínová A1, et al. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitusMetabolism. (2009)
  102. Wills NK1, et al. Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and genderExp Eye Res. (2008)
  103. Behndig A1, et al. Superoxide dismutase isoenzymes in the human eyeInvest Ophthalmol Vis Sci. (1998)
  104. Gahlot DK, Ratnakar KS. Effect of experimentally induced chronic copper toxicity on retinaIndian J Ophthalmol. (1981)
  105. Wills NK1, et al. Cadmium accumulation in the human retina: effects of age, gender, and cellular toxicityExp Eye Res. (2008)
  106. Zampatti S1, et al. Review of nutrient actions on age-related macular degenerationNutr Res. (2014)
  107. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1Control Clin Trials. (1999)
  108. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8Arch Ophthalmol. (2001)
  109. Sin HP1, Liu DT, Lam DS. Lifestyle modification, nutritional and vitamins supplements for age-related macular degenerationActa Ophthalmol. (2013)
  110. Gordon SA1, et al. Impaired deformability of copper-deficient neutrophilsExp Biol Med (Maywood). (2005)
  111. Lominadze D1, et al. Proinflammatory effects of copper deficiency on neutrophils and lung endothelial cellsImmunol Cell Biol. (2004)
  112. Wagner D1, et al. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal systemJ Immunol. (2005)
  113. Babu U1, Failla ML. Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient ratsJ Nutr. (1990)
  114. Suttle NF1, Jones DG. Recent developments in trace element metabolism and function: trace elements, disease resistance and immune responsiveness in ruminantsJ Nutr. (1989)
  115. Leary SC1, Winge DR. The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. Meeting on Copper and Related Metals in BiologyEMBO Rep. (2007)
  116. White C1, et al. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activityJ Biol Chem. (2009)
  117. Pyo HK1, et al. The effect of tripeptide-copper complex on human hair growth in vitroArch Pharm Res. (2007)
  118. Kil MS, Kim CW, Kim SS. Analysis of serum zinc and copper concentrations in hair lossAnn Dermatol. (2013)
  119. Bhat YJ1, et al. Trace element levels in alopecia areataIndian J Dermatol Venereol Leprol. (2009)
  120. Ozturk P1, et al. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopeciaJ Trace Elem Med Biol. (2014)
  121. Turok DK1, et al. Emergency contraception with a copper IUD or oral levonorgestrel: an observational study of 1-year pregnancy ratesContraception. (2014)
  122. Farr G1, Amatya R. Contraceptive efficacy of the Copper T380A and the Multiload Cu250 IUD in three developing countriesAdv Contracept. (1994)
  123. Yu J1, et al. Comparative study on contraceptive efficacy and clinical performance of the copper/low-density polyethylene nanocomposite IUD and the copper T220C IUDContraception. (2008)
  124. Andrade AT1, et al. Consequences of uterine blood loss caused by various intrauterine contraceptive devices in South American women. World Health Organization Special Programme of Research, Development and Research Training in Human ReproductionContraception. (1988)
  125. Sivin I1, et al. Rates and outcomes of planned pregnancy after use of Norplant capsules, Norplant II rods, or levonorgestrel-releasing or copper TCu 380Ag intrauterine contraceptive devicesAm J Obstet Gynecol. (1992)
  126. Godfrey EM1, et al. Treatment of bleeding irregularities in women with copper-containing IUDs: a systematic reviewContraception. (2013)
  127. Bush AI1, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesisNeurotherapeutics. (2008)
  128. Bucossi S1, et al. Copper in Alzheimer’s disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studiesJ Alzheimers Dis. (2011)
  129. Brewer GJ1. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s diseaseJ Am Coll Nutr. (2009)
  130. Madarić A1, Ginter E, Kadrabová J. Serum copper, zinc and copper/zinc ratio in males: influence of agingPhysiol Res. (1994)
  131. Vasudevaraju P1, et al. New evidence on iron, copper accumulation and zinc depletion and its correlation with DNA integrity in aging human brain regionsIndian J Psychiatry. (2010)
  132. Mao X1, et al. The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats.Neurosci Lett. (2012)
  133. Ceccom J1, et al. Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer’s mouse modelPLoS One. (2012)
  134. White AR1, et al. The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal culturesJ Neurosci. (1999)
  135. Wang H1, et al. The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer’s diseaseMetallomics. (2012)
  136. Yoshiike Y1, et al. New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicityJ Biol Chem. (2001)
  137. Huang X1, et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reductionBiochemistry. (1999)
  138. Dikalov SI1, Vitek MP, Mason RP. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radicalFree Radic Biol Med. (2004)
  139. Huang X1, et al. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reductionJ Biol Chem. (1999)
  140. Barnham KJ1, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stressNat Rev Drug Discov. (2004)
  141. Dai XL1, Sun YX, Jiang ZF. Cu(II) potentiation of Alzheimer Abeta1-40 cytotoxicity and transition on its secondary structureActa Biochim Biophys Sin (Shanghai). (2006)
  142. Squitti R1, Polimanti R. Copper hypothesis in the missing hereditability of sporadic Alzheimer’s disease: ATP7B gene as potential harbor of rare variantsJ Alzheimers Dis. (2012)
  143. Squitti R1, et al. Linkage disequilibrium and haplotype analysis of the ATP7B gene in Alzheimer’s diseaseRejuvenation Res. (2013)
  144. Aschner M1, West AK. The role of MT in neurological disordersJ Alzheimers Dis. (2005)
  145. Sharma S1, Ebadi M2. Significance of metallothioneins in aging brainNeurochem Int. (2014)
  146. Palmiter RD1. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1Proc Natl Acad Sci U S A. (1994)
  147. Heuchel R1, et al. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expressionEMBO J. (1994)
  148. Klaassen CD1, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicityAnnu Rev Pharmacol Toxicol. (1999)
  149. Aschner M1, et al. Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicityExp Biol Med (Maywood). (2006)
  150. Willis MS1, et al. Zinc-induced copper deficiency: a report of three cases initially recognized on bone marrow examinationAm J Clin Pathol. (2005)
  151. Afrin LB1. Fatal copper deficiency from excessive use of zinc-based denture adhesiveAm J Med Sci. (2010)
  152. Nations SP1, et al. Denture cream: an unusual source of excess zinc, leading to hypocupremia and neurologic diseaseNeurology. (2008)
  153. Prodan CI1, et al. CNS demyelination associated with copper deficiency and hyperzincemiaNeurology. (2002)
  154. Prodan CI1, Holland NR. CNS demyelination from zinc toxicityNeurology. (2000)
  155. Intestinal absorption of copper: Effect of amino acids.
  156. Baker DH, Czarnecki-Maulden GL. Pharmacologic role of cysteine in ameliorating or exacerbating mineral toxicitiesJ Nutr. (1987)
  157. Van Campen D, Gross E. Influence of ascorbic acid on the absorption of copper by ratsJ Nutr. (1968)
  158. Aoyagi S1, Baker DH. Copper-amino acid complexes are partially protected against inhibitory effects of L-cysteine and L-ascorbic acid on copper absorption in chicksJ Nutr. (1994)