Leucín

Pôsobí na: rast svalov a cvičenie,
zachovanie celkového zdravia

Leucín je primárna aminokyselina s rozvetveným reťazcom (BCAA) a má väčšinu pozitív BCAA. Leucín je účinný aj sám o sebe a je lacnejší ako zmes BCAA, avšak tak ako ostatné BCAA aj leucín má horkú chuť.

Užívanie

Leucín sa zvyčajne akútne užíva v dávke 2-5 g. Mal by sa užívať buď nalačno, alebo s jedlom, ktoré má prirodzene nízky obsah bielkovín (alebo obsahuje proteíny chudobné na leucín).

Medicínske upozornenie!

Literatúra

  1. Holmes HC, et al. Ketogenic flux from lipids and leucine, assessment in 3-hydroxy-3-methylglutaryl CoA lyase deficiencyBiochem Soc Trans. (1995)
  2. Yeh YY. Ketone body synthesis from leucine by adipose tissue from different sites in the ratArch Biochem Biophys. (1984)
  3. Sabourin PJ, Bieber LL. Formation of beta-hydroxyisovalerate by an alpha-ketoisocaproate oxygenase in human liverMetabolism. (1983)
  4. Nutraceutical Effects of Branched-Chain Amino Acids on Skeletal Muscle.
  5. Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivoAm J Physiol. (1992)
  6. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolismCell. (2006)
  7. Kim DH, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machineryCell. (2002)
  8. Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancerTrends Mol Med. (2007)
  9. Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinaseJ Biol Chem. (2005)
  10. Nobukuni T, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinaseProc Natl Acad Sci U S A. (2005)
  11. Greiwe JS, et al. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscleAm J Physiol Endocrinol Metab. (2001)
  12. Blomstrand E, et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exerciseJ Nutr. (2006)
  13. Conus NM, Hemmings BA, Pearson RB. Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6kJ Biol Chem. (1998)
  14. Hannan KM, Thomas G, Pearson RB. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complexBiochem J. (2003)
  15. Gulati P, et al. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34Cell Metab. (2008)
  16. Mercan F, et al. Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1 signalingMol Cell Biol. (2013)
  17. Fornaro M, et al. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growthJ Cell Biol. (2006)
  18. Zito CI, et al. SHP-2 regulates cell growth by controlling the mTOR/S6 kinase 1 pathwayJ Biol Chem. (2007)
  19. Inoki K, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signalingGenes Dev. (2003)
  20. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia.
  21. Verdin E, et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signalingTrends Biochem Sci. (2010)
  22. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevityNat Rev Mol Cell Biol. (2005)
  23. Guarente L, Picard F. Calorie restriction–the SIR2 connectionCell. (2005)
  24. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}J Biol Chem. (2005)
  25. Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cellsNutr Metab (Lond). (2011)
  26. Bruckbauer A, et al. The effects of dairy components on energy partitioning and metabolic risk in mice: a microarray studyJ Nutrigenet Nutrigenomics. (2009)
  27. Bruckbauer A, Zemel MB. Dietary calcium and dairy modulation of oxidative stress and mortality in aP2-agouti and wild-type miceNutrients. (2009)
  28. Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytesNutr Metab (Lond). (2009)
  29. Hinault C, et al. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db miceFASEB J. (2004)
  30. Uberall F, et al. Evidence that atypical protein kinase C-lambda and atypical protein kinase C-zeta participate in Ras-mediated reorganization of the F-actin cytoskeletonJ Cell Biol. (1999)
  31. Nishitani S, et al. Leucine promotes glucose uptake in skeletal muscles of ratsBiochem Biophys Res Commun. (2002)
  32. Chang TW, Goldberg AL. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fastingJ Biol Chem. (1978)
  33. Tessari P, et al. Hyperaminoacidaemia reduces insulin-mediated glucose disposal in healthy manDiabetologia. (1985)
  34. Flakoll PJ, et al. Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acid availabilityDiabetologia. (1992)
  35. Du M, et al. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinaseJ Anim Sci. (2007)
  36. Hardie DG. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolismProc Nutr Soc. (2011)
  37. O’Neill HM. AMPK and Exercise: Glucose Uptake and Insulin SensitivityDiabetes Metab J. (2013)
  38. Takano A, et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulinMol Cell Biol. (2001)
  39. Tremblay F, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistanceProc Natl Acad Sci U S A. (2007)
  40. Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cellsJ Biol Chem. (2001)
  41. Haruta T, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1Mol Endocrinol. (2000)
  42. Hutton JC, Sener A, Malaisse WJ. Interaction of branched chain amino acids and keto acids upon pancreatic islet metabolism and insulin secretionJ Biol Chem. (1980)
  43. Yang J, et al. Leucine stimulates insulin secretion via down-regulation of surface expression of adrenergic α2A receptor through the mTOR (mammalian target of rapamycin) pathway: implication in new-onset diabetes in renal transplantationJ Biol Chem. (2012)
  44. Sener A, Malaisse WJ. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenaseNature. (1980)
  45. Stanley CA. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolismMol Genet Metab. (2004)
  46. Yang J, et al. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cellsDiabetes. (2006)
  47. Yang J, et al. Leucine culture reveals that ATP synthase functions as a fuel sensor in pancreatic beta-cellsJ Biol Chem. (2004)
  48. Bränström R, et al. Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproateJ Biol Chem. (1998)
  49. Jonkers FC, Henquin JC. Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits beta-cells and gradually increases the individual cell responseDiabetes. (2001)
  50. Malaisse WJ, et al. The stimulus-secretion coupling of amino acid-induced insulin release: metabolism and cationic effects of leucineDiabetes. (1980)
  51. Devedjian JC, et al. Transgenic mice overexpressing alpha2A-adrenoceptors in pancreatic beta-cells show altered regulation of glucose homeostasisDiabetologia. (2000)
  52. Rosengren AH, et al. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetesScience. (2010)
  53. Shimodahira M, et al. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolismJ Endocrinol. (2010)
  54. Fraenkel M, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetesDiabetes. (2008)
  55. Anthony JC, et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathwayJ Nutr. (2000)
  56. Drummond MJ, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesisJ Physiol. (2009)
  57. Phosphorylation and Activation of p70s6k by PDK1.
  58. Fischer PM. Cap in hand: targeting eIF4ECell Cycle. (2009)
  59. Kimball SR, Jefferson LS. Regulation of protein synthesis by branched-chain amino acidsCurr Opin Clin Nutr Metab Care. (2001)
  60. Anthony JC, et al. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formationJ Nutr. (2000)
  61. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle.
  62. Resistance Exercise Increases Muscle Protein Synthesis and Translation of Eukaryotic Initiation Factor 2Bϵ mRNA in a Mammalian Target of Rapamycin-dependent Manner.
  63. Vander Haar E, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40Nat Cell Biol. (2007)
  64. Elmadhun NY, et al. Metformin alters the insulin signaling pathway in ischemic cardiac tissue in a swine model of metabolic syndromeJ Thorac Cardiovasc Surg. (2013)
  65. Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophyNat Cell Biol. (2003)
  66. Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cellsEur J Biochem. (2002)
  67. Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humansAm J Physiol. (1992)
  68. Alvestrand A, et al. Influence of leucine infusion on intracellular amino acids in humansEur J Clin Invest. (1990)
  69. Yang J, et al. Leucine metabolism in regulation of insulin secretion from pancreatic beta cellsNutr Rev. (2010)
  70. Anthony TG, et al. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of ratsJ Nutr. (2001)
  71. Tipton KD, et al. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus proteinAppl Physiol Nutr Metab. (2009)
  72. Tipton KD, et al. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exerciseAm J Physiol Endocrinol Metab. (2007)
  73. Tipton KD, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exerciseAm J Physiol Endocrinol Metab. (2001)
  74. Leucine Supplementation Enhances Skeletal Muscle Recovery in Rats Following Exercise.
  75. Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies.
  76. Peters SJ, et al. Dose-dependent effects of leucine supplementation on preservation of muscle mass in cancer cachectic miceOncol Rep. (2011)
  77. De Bandt JP, Cynober L. Therapeutic use of branched-chain amino acids in burn, trauma, and sepsisJ Nutr. (2006)
  78. Nicastro H, et al. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditionsAmino Acids. (2011)
  79. Fujita S, Volpi E. Amino acids and muscle loss with agingJ Nutr. (2006)
  80. A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle.
  81. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly.
  82. Rieu I, et al. Leucine-supplemented meal feeding for ten days beneficially affects postprandial muscle protein synthesis in old ratsJ Nutr. (2003)
  83. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing linksCell. (2012)
  84. Kalogeropoulou D, et al. Leucine, when ingested with glucose, synergistically stimulates insulin secretion and lowers blood glucoseMetabolism. (2008)
  85. Bruckbauer A, et al. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and miceNutr Metab (Lond). (2012)
  86. Le Plénier S, et al. Effects of leucine and citrulline versus non-essential amino acids on muscle protein synthesis in fasted rat: a common activation pathwayAmino Acids. (2012)
  87. Osowska S, et al. Citrulline modulates muscle protein metabolism in old malnourished ratsAm J Physiol Endocrinol Metab. (2006)
  88. Faure C, et al. Leucine and citrulline modulate muscle function in malnourished aged ratsAmino Acids. (2012)
  89. Direct action of citrulline on muscle protein synthesis: role of the mTORC1 pathway.
  90. Cynober L, de Bandt JP, Moinard C. Leucine and citrulline: two major regulators of protein turnoverWorld Rev Nutr Diet. (2013)
  91. Thibault R, et al. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: results of a prospective, randomized, double-blind, cross-over studyClin Nutr. (2011)
  92. Rougé C, et al. Manipulation of citrulline availability in humansAm J Physiol Gastrointest Liver Physiol. (2007)
  93. Elango R, et al. Determination of the tolerable upper intake level of leucine in acute dietary studies in young menAm J Clin Nutr. (2012)
  94. Ispoglou T, et al. Daily L-leucine supplementation in novice trainees during a 12-week weight training programInt J Sports Physiol Perform. (2011)