D-Serín

Pôsobí na: mozog a kognitívne funkcie

D-Serín je aminokyselina, ktorá zohráva úlohu pri zlepšovaní poznávacích funkcií a liečbe schizofrénie.

Užívanie

Bežná dávka je 30 mg/kg telesnej hmotnosti. To približne zodpovedá dávke 2100 – 2700 mg pre 70-90 kg človeka. Zdá sa, že toto je minimálna účinná dávka na zlepšenie kognitívnych schopností u ľudí trpiacich rôznymi chorobami. Predbežné výskumy naznačujú, že dvoj- až štvornásobok tejto dávky prináša ďalšie výhody pre ľudí postihnutých schizofréniou.

Medicínske upozornenie!

Literatúra

  1. Martineau M, Baux G, Mothet JP. D-serine signalling in the brain: friend and foeTrends Neurosci. (2006)
  2. Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspectivePhilos Trans R Soc Lond B Biol Sci. (2004)
  3. Monahan JB, et al. Characterization of a {3H}glycine recognition site as a modulatory site of the N-methyl-D-aspartate receptor complexJ Neurochem. (1989)
  4. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release.
  5. Watson GB, et al. D-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytesBrain Res. (1990)
  6. Berger AJ, Dieudonné S, Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapsesJ Neurophysiol. (1998)
  7. Papouin T, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonistsCell. (2012)
  8. Radzishevsky I, Sason H, Wolosker H. D-serine: physiology and pathologyCurr Opin Clin Nutr Metab Care. (2013)
  9. Thomas CG, Miller AJ, Westbrook GL. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neuronsJ Neurophysiol. (2006)
  10. Groc L, et al. NMDA receptor surface mobility depends on NR2A-2B subunitsProc Natl Acad Sci U S A. (2006)
  11. Martel MA, et al. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insultsNeuron. (2012)
  12. Yasuda E, Ma N, Semba R. Immunohistochemical evidences for localization and production of D-serine in some neurons in the rat brainNeurosci Lett. (2001)
  13. Yang Y, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serineProc Natl Acad Sci U S A. (2003)
  14. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmissionProc Natl Acad Sci U S A. (1999)
  15. Xia M, et al. Characterization and localization of a human serine racemaseBrain Res Mol Brain Res. (2004)
  16. Williams SM, et al. Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neuronsGlia. (2006)
  17. De Miranda J, et al. Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serineProc Natl Acad Sci U S A. (2002)
  18. Neidle A, Dunlop DS. Allosteric regulation of mouse brain serine racemaseNeurochem Res. (2002)
  19. Cook SP, et al. Direct calcium binding results in activation of brain serine racemaseJ Biol Chem. (2002)
  20. Strísovský K, et al. Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activityBiochemistry. (2005)
  21. Dunlop DS, Neidle A. Regulation of serine racemase activity by amino acidsBrain Res Mol Brain Res. (2005)
  22. Kim PM, et al. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migrationProc Natl Acad Sci U S A. (2005)
  23. Strísovský K, et al. Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvateFEBS Lett. (2003)
  24. Urai Y, et al. Gene expression of D-amino acid oxidase in cultured rat astrocytes: regional and cell type specific expressionNeurosci Lett. (2002)
  25. Molla G, et al. Characterization of human D-amino acid oxidaseFEBS Lett. (2006)
  26. Horiike K, et al. D-amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytesBrain Res. (1994)
  27. Moreno S, et al. Immunocytochemical localization of D-amino acid oxidase in rat brainJ Neurocytol. (1999)
  28. Hamase K, et al. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amountsBiol Pharm Bull. (2005)
  29. Heresco-Levy U, et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophreniaBiol Psychiatry. (2005)
  30. Heresco-Levy U, et al. High-dose glycine added to olanzapine and risperidone for the treatment of schizophreniaBiol Psychiatry. (2004)
  31. Lane HY, et al. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophreniaInt J Neuropsychopharmacol. (2010)
  32. Lane HY, et al. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled studyArch Gen Psychiatry. (2005)
  33. Kantrowitz JT, et al. High dose D-serine in the treatment of schizophreniaSchizophr Res. (2010)
  34. Gelfin E, et al. D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson’s diseaseInt J Neuropsychopharmacol. (2012)
  35. Heresco-Levy U, et al. Pilot controlled trial of D-serine for the treatment of post-traumatic stress disorderInt J Neuropsychopharmacol. (2009)
  36. Nagata Y, et al. Free D-serine concentration in normal and Alzheimer human brainBrain Res Bull. (1995)
  37. Chouinard ML, Gaitan D, Wood PL. Presence of the N-methyl-D-aspartate-associated glycine receptor agonist, D-serine, in human temporal cortex: comparison of normal, Parkinson, and Alzheimer tissuesJ Neurochem. (1993)
  38. Kumashiro S, Hashimoto A, Nishikawa T. Free D-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseasesBrain Res. (1995)
  39. Foltyn VN, et al. Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activityJ Biol Chem. (2005)
  40. Otte DM, et al. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related BehaviorPLoS One. (2013)
  41. Sethuraman R, et al. Simultaneous analysis of D- and L-serine in cerebrospinal fluid by use of HPLCClin Chem. (2007)
  42. Hashimoto K, et al. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patientsProg Neuropsychopharmacol Biol Psychiatry. (2005)
  43. Bezzi P, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamateNat Neurosci. (2004)
  44. Mothet JP, et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serineProc Natl Acad Sci U S A. (2005)
  45. Schell MJ, et al. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptorsJ Neurosci. (1997)
  46. Van Horn MR, Sild M, Ruthazer ES. D-serine as a gliotransmitter and its roles in brain development and diseaseFront Cell Neurosci. (2013)
  47. Sild M, Van Horn MR. Astrocytes use a novel transporter to fill gliotransmitter vesicles with d-serine: evidence for vesicular synergyJ Neurosci. (2013)
  48. Bergersen LH, et al. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytesCereb Cortex. (2012)
  49. Storage and Uptake of D-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission.
  50. Rosenberg D, et al. Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentrationFASEB J. (2010)
  51. Rosenberg D, et al. Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activityJ Neurosci. (2013)
  52. Kang N, et al. Astrocytes release D-serine by a large vesicleNeuroscience. (2013)
  53. Shigetomi E, et al. TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive D-Serine ReleaseJ Neurosci. (2013)
  54. Long term potentiation depends on release of D-serine from astrocytes.
  55. Shoji K, et al. Regulation of serine racemase activity by D-serine and nitric oxide in human glioblastoma cellsNeurosci Lett. (2006)
  56. Shoji K, et al. Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cellsNeurosci Lett. (2006)
  57. Alagarsamy S, Johnson KM. Voltage-dependent calcium channel involvement in NMDA-induced activation of NOSNeuroreport. (1995)
  58. Bado P, et al. Effects of low-dose D-serine on recognition and working memory in micePsychopharmacology (Berl). (2011)
  59. Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivoJ Neurophysiol. (2003)
  60. Lim R, Hoang P, Berger AJ. Blockade of glycine transporter-1 (GLYT-1) potentiates NMDA receptor-mediated synaptic transmission in hypoglossal motorneuronsJ Neurophysiol. (2004)
  61. Hashimoto A, et al. The presence of free D-serine in rat brainFEBS Lett. (1992)
  62. Endogenous d-Serine in Rat Brain: N-Methyl-d-Aspartate Receptor-Related Distribution and Aging.
  63. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neuronsNature. (1987)
  64. Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptorNeuron. (1991)
  65. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times aheadLancet Neurol. (2008)
  66. Mothet JP, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptorProc Natl Acad Sci U S A. (2000)
  67. Supplisson S, Bergman C. Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytesJ Neurosci. (1997)
  68. Wilcox KS, et al. Glycine regulation of synaptic NMDA receptors in hippocampal neuronsJ Neurophysiol. (1996)
  69. Depoortère R, et al. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychoticNeuropsychopharmacology. (2005)
  70. Martina M, Krasteniakov NV, Bergeron R. D-Serine differently modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and interneuronsJ Physiol. (2003)
  71. Thomson AM, Walker VE, Flynn DM. Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slicesNature. (1989)
  72. Stevens ER, et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptorsProc Natl Acad Sci U S A. (2003)
  73. Gong XQ, Zabek RL, Bai D. D-Serine inhibits AMPA receptor-mediated current in rat hippocampal neuronsCan J Physiol Pharmacol. (2007)
  74. McNamara D, Dingledine R. Dual effect of glycine on NMDA-induced neurotoxicity in rat cortical culturesJ Neurosci. (1990)
  75. The glycinergic inhibitory synapse.
  76. Betz H, et al. Glycine transporters: essential regulators of synaptic transmissionBiochem Soc Trans. (2006)
  77. Aragón C, López-Corcuera B. Glycine transporters: crucial roles of pharmacological interest revealed by gene deletionTrends Pharmacol Sci. (2005)
  78. Hayashi F, Takahashi K, Nishikawa T. Uptake of D- and L-serine in C6 glioma cellsNeurosci Lett. (1997)
  79. Ribeiro CS, et al. Glial transport of the neuromodulator D-serineBrain Res. (2002)
  80. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disordersScience. (1993)
  81. Armagan G, Kanit L, Yalcin A. Effects of non-steroidal antiinflammatory drugs on D-serine-induced oxidative stress in vitroDrug Chem Toxicol. (2012)
  82. Armagan G, Kanit L, Yalcin A. D-serine treatment induces oxidative stress in rat brainDrug Chem Toxicol. (2011)
  83. Leipnitz G, et al. d-Serine administration provokes lipid oxidation and decreases the antioxidant defenses in rat striatumInt J Dev Neurosci. (2010)
  84. Kinouchi H, et al. Induction of cyclooxygenase-2 messenger RNA after transient and permanent middle cerebral artery occlusion in rats: comparison with c-fos messenger RNA by using in situ hybridizationJ Neurosurg. (1999)
  85. Collaço-Moraes Y, et al. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemiaJ Cereb Blood Flow Metab. (1996)
  86. Dash PK, Mach SA, Moore AN. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injuryJ Neurotrauma. (2000)
  87. Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventionsJ Neurosci Res. (1998)
  88. Hewett SJ, et al. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell cultureJ Pharmacol Exp Ther. (2000)
  89. Silva AJ. Molecular and cellular cognitive studies of the role of synaptic plasticity in memoryJ Neurobiol. (2003)
  90. Matynia A, Kushner SA, Silva AJ. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memoryAnnu Rev Genet. (2002)
  91. Tang YP, et al. Genetic enhancement of learning and memory in miceNature. (1999)
  92. Hawasli AH, et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradationNat Neurosci. (2007)
  93. Panatier A, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memoryCell. (2006)
  94. Braunewell KH, Manahan-Vaughan D. Long-term depression: a cellular basis for learningRev Neurosci. (2001)
  95. Duffy S, Labrie V, Roder JC. D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learningNeuropsychopharmacology. (2008)
  96. Zhang Z, et al. Bell-shaped D-serine actions on hippocampal long-term depression and spatial memory retrievalCereb Cortex. (2008)
  97. Landfield PW, Pitler TA, Applegate MD. The effects of high Mg2+-to-Ca2+ ratios on frequency potentiation in hippocampal slices of young and aged ratsJ Neurophysiol. (1986)
  98. Landfield PW, Lynch G. Impaired monosynaptic potentiation in in vitro hippocampal slices from aged, memory-deficient ratsJ Gerontol. (1977)
  99. Foster TC. Calcium homeostasis and modulation of synaptic plasticity in the aged brainAging Cell. (2007)
  100. Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the storeAging Cell. (2007)
  101. Billard JM. Serine racemase as a prime target for age-related memory deficitsEur J Neurosci. (2013)
  102. Turpin FR, et al. Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive functionNeurobiol Aging. (2011)
  103. Magnusson KR, Nelson SE, Young AB. Age-related changes in the protein expression of subunits of the NMDA receptorBrain Res Mol Brain Res. (2002)
  104. Adams MM, et al. Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged ratsJ Comp Neurol. (2001)
  105. Alliot J, et al. The LOU/c/jall rat as an animal model of healthy agingJ Gerontol A Biol Sci Med Sci. (2002)
  106. Mothet JP, et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memoryAging Cell. (2006)
  107. Junjaud G, et al. Age-related effects of the neuromodulator D-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the ratJ Neurochem. (2006)
  108. Long term potentiation depends on release of D-serine from astrocytes.
  109. Assini FL, Duzzioni M, Takahashi RN. Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participationBehav Brain Res. (2009)
  110. Zlomuzica A, et al. NMDA receptor modulation by D-cycloserine promotes episodic-like memory in micePsychopharmacology (Berl). (2007)
  111. Levin R1, et al. Behavioral and cognitive effects of the N-methyl-d-aspartate receptor co-agonist d-serine in healthy humans: Initial findingsJ Psychiatr Res. (2014)
  112. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disordersN Engl J Med. (1994)
  113. Farber NB, Newcomer JW, Olney JW. The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer’s diseaseProg Brain Res. (1998)
  114. Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s diseaseJ Neurochem. (2013)
  115. Huang YJ, et al. NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer’s DiseaseCurr Neuropharmacol. (2012)
  116. Brito-Moreira J, et al. Aβ oligomers induce glutamate release from hippocampal neuronsCurr Alzheimer Res. (2011)
  117. Wu S, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by secreted amyloid precursor protein (sAPP)Curr Alzheimer Res. (2007)
  118. Wu SZ, et al. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptideJ Neuroinflammation. (2004)
  119. Nunes EA, et al. D-serine and schizophrenia: an updateExpert Rev Neurother. (2012)
  120. Labrie V, Roder JC. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophreniaNeurosci Biobehav Rev. (2010)
  121. Waziri R, Baruah S, Sherman AD. Abnormal serine-glycine metabolism in the brains of schizophrenicsSchizophr Res. (1993)
  122. Waziri R, et al. Abnormal serine hydroxymethyl transferase activity in the temporal lobes of schizophrenicsNeurosci Lett. (1990)
  123. Hashimoto K, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophreniaArch Gen Psychiatry. (2003)
  124. Hashimoto K. Glycine transport inhibitors for the treatment of schizophreniaOpen Med Chem J. (2010)
  125. Dysfunction of Glia-Neuron Communication in Pathophysiology of Schizophrenia.
  126. Labrie V, Lipina T, Roder JC. Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophreniaPsychopharmacology (Berl). (2008)
  127. Balu DT, et al. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunctionProc Natl Acad Sci U S A. (2013)
  128. Ma TM, et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletionMol Psychiatry. (2013)
  129. Labrie V, et al. Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in miceGenes Brain Behav. (2010)
  130. Ohnuma T, et al. Changes in plasma glycine, L-serine, and D-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP)Prog Neuropsychopharmacol Biol Psychiatry. (2008)
  131. Buchanan RW. Novel pharmacologic targets for the treatment of negative symptoms in schizophreniaJ Clin Psychiatry. (2013)
  132. Tsai G, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophreniaBiol Psychiatry. (2004)
  133. Dingledine R, et al. The glutamate receptor ion channelsPharmacol Rev. (1999)
  134. Traynelis SF, et al. Glutamate receptor ion channels: structure, regulation, and functionPharmacol Rev. (2010)
  135. Lewis DA, Gonzalez-Burgos G. Pathophysiologically based treatment interventions in schizophreniaNat Med. (2006)
  136. Ross CA, et al. Neurobiology of schizophreniaNeuron. (2006)
  137. Tsai G, et al. D-serine added to antipsychotics for the treatment of schizophreniaBiol Psychiatry. (1998)
  138. Weiser M, et al. A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophreniaJ Clin Psychiatry. (2012)
  139. Tsai GE, et al. D-serine added to clozapine for the treatment of schizophreniaAm J Psychiatry. (1999)
  140. Isella V, et al. Clinical, neuropsychological, and morphometric correlates of apathy in Parkinson’s diseaseMov Disord. (2002)
  141. Pluck GC, Brown RG. Apathy in Parkinson’s diseaseJ Neurol Neurosurg Psychiatry. (2002)
  142. Chéramy A, et al. Direct and indirect presynaptic control of dopamine release by excitatory amino acidsAmino Acids. (1998)
  143. Hallett PJ, Standaert DG. Rationale for and use of NMDA receptor antagonists in Parkinson’s diseasePharmacol Ther. (2004)
  144. Chambers RA, et al. Glutamate and post-traumatic stress disorder: toward a psychobiology of dissociationSemin Clin Neuropsychiatry. (1999)
  145. Newcomer JW, Krystal JH. NMDA receptor regulation of memory and behavior in humansHippocampus. (2001)
  146. Heresco-Levy U, et al. Pilot-controlled trial of D-cycloserine for the treatment of post-traumatic stress disorderInt J Neuropsychopharmacol. (2002)
  147. Sasabe J, et al. D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosisEMBO J. (2007)
  148. Thompson M, et al. Paradoxical roles of serine racemase and D-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosisJ Neurochem. (2012)
  149. Crow JP, Marecki JC, Thompson M. D-Serine Production, Degradation, and Transport in ALS: Critical Role of MethodologyNeurol Res Int. (2012)
  150. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodelingNeuron. (2011)
  151. Kauer JA, Malenka RC. Synaptic plasticity and addictionNat Rev Neurosci. (2007)
  152. Transition to Addiction Is Associated with a Persistent Impairment in Synaptic Plasticity.
  153. Martin M, et al. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbensNat Neurosci. (2006)
  154. Moussawi K, et al. N-Acetylcysteine reverses cocaine-induced metaplasticityNat Neurosci. (2009)
  155. Curcio L, et al. Reduced D-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticityBrain. (2013)
  156. Kelamangalath L, Seymour CM, Wagner JJ. D-serine facilitates the effects of extinction to reduce cocaine-primed reinstatement of drug-seeking behaviorNeurobiol Learn Mem. (2009)
  157. Kelamangalath L, Wagner JJ. D-serine treatment reduces cocaine-primed reinstatement in rats following extended access to cocaine self-administrationNeuroscience. (2010)
  158. Hammond S, et al. D-Serine facilitates the effectiveness of extinction to reduce drug-primed reinstatement of cocaine-induced conditioned place preferenceNeuropharmacology. (2013)